Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition

The switch in cell metabolism from oxidative phosphorylation to glycolysis is critical for the reprogramming of cells to pluripotency. Here, we demonstrate that the disturbance of mitochondrial metabolism by canonical mitochondrial inhibitors enhances metabolic reprogramming toward a glycolytic stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2013-11, Vol.45 (11), p.2512-2518
Hauptverfasser: Son, Myung Jin, Jeong, Bo Ram, Kwon, Youjeong, Cho, Yee Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The switch in cell metabolism from oxidative phosphorylation to glycolysis is critical for the reprogramming of cells to pluripotency. Here, we demonstrate that the disturbance of mitochondrial metabolism by canonical mitochondrial inhibitors enhances metabolic reprogramming toward a glycolytic state, enabling the highly efficient generation of induced pluripotent stem cells. This interference with mitochondrial bioenergetics resulted in enriched reprogrammable subpopulations and accelerated the conversion of refractory intermediates to pluripotent states without requiring additional genetic or epigenetic modifications. Conversely, the reprogramming efficiency and accelerated reprogramming kinetics promoted by mitochondrial inhibition were obstructed by glycolysis inhibitors. We suggest that changes in mitochondrial bioenergetics are a novel mechanism involved in the regulation of cell fate and, more importantly, in the reprogramming of cells to pluripotency.
ISSN:1357-2725
1878-5875
DOI:10.1016/j.biocel.2013.07.023