Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass
Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A dire...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2014-06, Vol.60 (6), p.2365-2372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2372 |
---|---|
container_issue | 6 |
container_start_page | 2365 |
container_title | AIChE journal |
container_volume | 60 |
creator | Forest, Robert V. Eser, Erten McCandless, Brian E. Birkmire, Robert W. Chen, Jingguang G. |
description | Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014 |
doi_str_mv | 10.1002/aic.14425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730113738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3302778641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qSN1CD_0HkXppDwHbsePkiFZAkbblAIijNZk4wTSxwU5U9t_Xu6E9IFWcRjPveyPNPEI-M3rMKOUnYPGYCcHlO7JiUqhc1lS-JytKKcvTgH0gH2N8SB1XFV-Rp1vXmhAncK11fTbdmyz4wWS-y_zztjcus24_jaYPpofJercTo2_tPGYwLeIcOsC9a_TDtmmNSyJ6mEy7QyEf7GiyfoAYj8hBB0M0n17qIbk9P7tZf883VxeX69NNjpIKmfOuAqQKscamVBSxELysOVTQIIA0TYVtybFFydqOYs0bUXU165pa8UogFIfk67L3Mfin2cRJjzaiGQZwxs9RM1VQxgpVVG-jshAVlaoWCf3yCn3wc3DpkETx9HfBpErUt4XC4GMMptOPwY4QtppRvctJp5z0PqfEnizsbzuY7f9BfXq5_uvIF4eNk3n-54DwS5eqUFLf_bzQ59c_NndiU-p18QfDD6Pv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524254157</pqid></control><display><type>article</type><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</creator><creatorcontrib>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</creatorcontrib><description>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14425</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Chemical bonds ; Control equipment ; Cu(InGa)Se2 ; Diffusion ; Glass ; Grain boundary diffusion ; Molybdenum ; Oxygen ; Photovoltaic cells ; Segregations ; Soda-lime glass ; Sodium ; solar energy ; Sun ; Surface chemistry ; x-ray photoelectron spectroscopy</subject><ispartof>AIChE journal, 2014-06, Vol.60 (6), p.2365-2372</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</citedby><cites>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14425$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14425$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Forest, Robert V.</creatorcontrib><creatorcontrib>Eser, Erten</creatorcontrib><creatorcontrib>McCandless, Brian E.</creatorcontrib><creatorcontrib>Birkmire, Robert W.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</description><subject>Chemical bonds</subject><subject>Control equipment</subject><subject>Cu(InGa)Se2</subject><subject>Diffusion</subject><subject>Glass</subject><subject>Grain boundary diffusion</subject><subject>Molybdenum</subject><subject>Oxygen</subject><subject>Photovoltaic cells</subject><subject>Segregations</subject><subject>Soda-lime glass</subject><subject>Sodium</subject><subject>solar energy</subject><subject>Sun</subject><subject>Surface chemistry</subject><subject>x-ray photoelectron spectroscopy</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha2qSN1CD_0HkXppDwHbsePkiFZAkbblAIijNZk4wTSxwU5U9t_Xu6E9IFWcRjPveyPNPEI-M3rMKOUnYPGYCcHlO7JiUqhc1lS-JytKKcvTgH0gH2N8SB1XFV-Rp1vXmhAncK11fTbdmyz4wWS-y_zztjcus24_jaYPpofJercTo2_tPGYwLeIcOsC9a_TDtmmNSyJ6mEy7QyEf7GiyfoAYj8hBB0M0n17qIbk9P7tZf883VxeX69NNjpIKmfOuAqQKscamVBSxELysOVTQIIA0TYVtybFFydqOYs0bUXU165pa8UogFIfk67L3Mfin2cRJjzaiGQZwxs9RM1VQxgpVVG-jshAVlaoWCf3yCn3wc3DpkETx9HfBpErUt4XC4GMMptOPwY4QtppRvctJp5z0PqfEnizsbzuY7f9BfXq5_uvIF4eNk3n-54DwS5eqUFLf_bzQ59c_NndiU-p18QfDD6Pv</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Forest, Robert V.</creator><creator>Eser, Erten</creator><creator>McCandless, Brian E.</creator><creator>Birkmire, Robert W.</creator><creator>Chen, Jingguang G.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SR</scope><scope>7SU</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201406</creationdate><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><author>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical bonds</topic><topic>Control equipment</topic><topic>Cu(InGa)Se2</topic><topic>Diffusion</topic><topic>Glass</topic><topic>Grain boundary diffusion</topic><topic>Molybdenum</topic><topic>Oxygen</topic><topic>Photovoltaic cells</topic><topic>Segregations</topic><topic>Soda-lime glass</topic><topic>Sodium</topic><topic>solar energy</topic><topic>Sun</topic><topic>Surface chemistry</topic><topic>x-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forest, Robert V.</creatorcontrib><creatorcontrib>Eser, Erten</creatorcontrib><creatorcontrib>McCandless, Brian E.</creatorcontrib><creatorcontrib>Birkmire, Robert W.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forest, Robert V.</au><au>Eser, Erten</au><au>McCandless, Brian E.</au><au>Birkmire, Robert W.</au><au>Chen, Jingguang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-06</date><risdate>2014</risdate><volume>60</volume><issue>6</issue><spage>2365</spage><epage>2372</epage><pages>2365-2372</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14425</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2014-06, Vol.60 (6), p.2365-2372 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730113738 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical bonds Control equipment Cu(InGa)Se2 Diffusion Glass Grain boundary diffusion Molybdenum Oxygen Photovoltaic cells Segregations Soda-lime glass Sodium solar energy Sun Surface chemistry x-ray photoelectron spectroscopy |
title | Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20role%20of%20oxygen%20in%20the%20segregation%20of%20sodium%20at%20the%20surface%20of%20molybdenum%20coated%20soda-lime%20glass&rft.jtitle=AIChE%20journal&rft.au=Forest,%20Robert%20V.&rft.date=2014-06&rft.volume=60&rft.issue=6&rft.spage=2365&rft.epage=2372&rft.pages=2365-2372&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14425&rft_dat=%3Cproquest_cross%3E3302778641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524254157&rft_id=info:pmid/&rfr_iscdi=true |