Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass

Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2014-06, Vol.60 (6), p.2365-2372
Hauptverfasser: Forest, Robert V., Eser, Erten, McCandless, Brian E., Birkmire, Robert W., Chen, Jingguang G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2372
container_issue 6
container_start_page 2365
container_title AIChE journal
container_volume 60
creator Forest, Robert V.
Eser, Erten
McCandless, Brian E.
Birkmire, Robert W.
Chen, Jingguang G.
description Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014
doi_str_mv 10.1002/aic.14425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730113738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3302778641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qSN1CD_0HkXppDwHbsePkiFZAkbblAIijNZk4wTSxwU5U9t_Xu6E9IFWcRjPveyPNPEI-M3rMKOUnYPGYCcHlO7JiUqhc1lS-JytKKcvTgH0gH2N8SB1XFV-Rp1vXmhAncK11fTbdmyz4wWS-y_zztjcus24_jaYPpofJercTo2_tPGYwLeIcOsC9a_TDtmmNSyJ6mEy7QyEf7GiyfoAYj8hBB0M0n17qIbk9P7tZf883VxeX69NNjpIKmfOuAqQKscamVBSxELysOVTQIIA0TYVtybFFydqOYs0bUXU165pa8UogFIfk67L3Mfin2cRJjzaiGQZwxs9RM1VQxgpVVG-jshAVlaoWCf3yCn3wc3DpkETx9HfBpErUt4XC4GMMptOPwY4QtppRvctJp5z0PqfEnizsbzuY7f9BfXq5_uvIF4eNk3n-54DwS5eqUFLf_bzQ59c_NndiU-p18QfDD6Pv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524254157</pqid></control><display><type>article</type><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</creator><creatorcontrib>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</creatorcontrib><description>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14425</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Chemical bonds ; Control equipment ; Cu(InGa)Se2 ; Diffusion ; Glass ; Grain boundary diffusion ; Molybdenum ; Oxygen ; Photovoltaic cells ; Segregations ; Soda-lime glass ; Sodium ; solar energy ; Sun ; Surface chemistry ; x-ray photoelectron spectroscopy</subject><ispartof>AIChE journal, 2014-06, Vol.60 (6), p.2365-2372</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</citedby><cites>FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14425$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14425$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Forest, Robert V.</creatorcontrib><creatorcontrib>Eser, Erten</creatorcontrib><creatorcontrib>McCandless, Brian E.</creatorcontrib><creatorcontrib>Birkmire, Robert W.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</description><subject>Chemical bonds</subject><subject>Control equipment</subject><subject>Cu(InGa)Se2</subject><subject>Diffusion</subject><subject>Glass</subject><subject>Grain boundary diffusion</subject><subject>Molybdenum</subject><subject>Oxygen</subject><subject>Photovoltaic cells</subject><subject>Segregations</subject><subject>Soda-lime glass</subject><subject>Sodium</subject><subject>solar energy</subject><subject>Sun</subject><subject>Surface chemistry</subject><subject>x-ray photoelectron spectroscopy</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha2qSN1CD_0HkXppDwHbsePkiFZAkbblAIijNZk4wTSxwU5U9t_Xu6E9IFWcRjPveyPNPEI-M3rMKOUnYPGYCcHlO7JiUqhc1lS-JytKKcvTgH0gH2N8SB1XFV-Rp1vXmhAncK11fTbdmyz4wWS-y_zztjcus24_jaYPpofJercTo2_tPGYwLeIcOsC9a_TDtmmNSyJ6mEy7QyEf7GiyfoAYj8hBB0M0n17qIbk9P7tZf883VxeX69NNjpIKmfOuAqQKscamVBSxELysOVTQIIA0TYVtybFFydqOYs0bUXU165pa8UogFIfk67L3Mfin2cRJjzaiGQZwxs9RM1VQxgpVVG-jshAVlaoWCf3yCn3wc3DpkETx9HfBpErUt4XC4GMMptOPwY4QtppRvctJp5z0PqfEnizsbzuY7f9BfXq5_uvIF4eNk3n-54DwS5eqUFLf_bzQ59c_NndiU-p18QfDD6Pv</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Forest, Robert V.</creator><creator>Eser, Erten</creator><creator>McCandless, Brian E.</creator><creator>Birkmire, Robert W.</creator><creator>Chen, Jingguang G.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SR</scope><scope>7SU</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201406</creationdate><title>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</title><author>Forest, Robert V. ; Eser, Erten ; McCandless, Brian E. ; Birkmire, Robert W. ; Chen, Jingguang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5045-2f8ac07cc9cb670cc342692a8abcaa5eb8cd62cdc51df0c92b48f91fb97284ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical bonds</topic><topic>Control equipment</topic><topic>Cu(InGa)Se2</topic><topic>Diffusion</topic><topic>Glass</topic><topic>Grain boundary diffusion</topic><topic>Molybdenum</topic><topic>Oxygen</topic><topic>Photovoltaic cells</topic><topic>Segregations</topic><topic>Soda-lime glass</topic><topic>Sodium</topic><topic>solar energy</topic><topic>Sun</topic><topic>Surface chemistry</topic><topic>x-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forest, Robert V.</creatorcontrib><creatorcontrib>Eser, Erten</creatorcontrib><creatorcontrib>McCandless, Brian E.</creatorcontrib><creatorcontrib>Birkmire, Robert W.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forest, Robert V.</au><au>Eser, Erten</au><au>McCandless, Brian E.</au><au>Birkmire, Robert W.</au><au>Chen, Jingguang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-06</date><risdate>2014</risdate><volume>60</volume><issue>6</issue><spage>2365</spage><epage>2372</epage><pages>2365-2372</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Molybdenum (Mo) coated soda‐lime glass is a commonly used substrate for Cu(InGa)Se2 solar cells as it also acts as the sodium (Na) source, which improves the efficiency of these devices. In this work, we investigate how oxygen controls the segregation and accumulation of Na on the Mo surface. A direct relationship between the concentration of surface oxygen and the amount of Na accumulation is showed. Values for the surface segregation ratio and grain boundary diffusion coefficient for Na in Mo are obtained by fitting diffusion data at several temperatures to a model for grain boundary diffusion. The results of this model reveal that surface oxygen controls the Na saturation level through its effect on the surface segregation of Na. An activation energy for grain boundary diffusion of Na is estimated and is similar to that of MoO bond dissociation in MoO3 suggesting the involvement of this bond during Na transport. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2365–2372, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14425</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2014-06, Vol.60 (6), p.2365-2372
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1730113738
source Wiley Online Library Journals Frontfile Complete
subjects Chemical bonds
Control equipment
Cu(InGa)Se2
Diffusion
Glass
Grain boundary diffusion
Molybdenum
Oxygen
Photovoltaic cells
Segregations
Soda-lime glass
Sodium
solar energy
Sun
Surface chemistry
x-ray photoelectron spectroscopy
title Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20role%20of%20oxygen%20in%20the%20segregation%20of%20sodium%20at%20the%20surface%20of%20molybdenum%20coated%20soda-lime%20glass&rft.jtitle=AIChE%20journal&rft.au=Forest,%20Robert%20V.&rft.date=2014-06&rft.volume=60&rft.issue=6&rft.spage=2365&rft.epage=2372&rft.pages=2365-2372&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14425&rft_dat=%3Cproquest_cross%3E3302778641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524254157&rft_id=info:pmid/&rfr_iscdi=true