Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules

The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the tria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-07, Vol.17 (29), p.19386-19393
Hauptverfasser: Chen, Chih-Chieh, Kuo, David M T, Chang, Yia-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19393
container_issue 29
container_start_page 19386
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Chen, Chih-Chieh
Kuo, David M T
Chang, Yia-Chung
description The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.
doi_str_mv 10.1039/c5cp02657a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730112661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1697216209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-dbaadf7d35563ebea4d4cfecdf1ba4b4132c8053b870794084d04e9081fd40803</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMozji68QEkSxGqSZOm7XIo3mBABV2XNDnRSpt2knThxmc344yzdXE4Fz7O7UfonJJrSlh5ozI1klRkuTxAc8oFS0pS8MN9nIsZOvH-kxBCM8qO0SwVlPOCZ3P0_TJJG6YetzaAM-DAKsDSauyDm1SYHCQaRrAabMCDa9ogu8S0XdfadwzGgAoeDxaHD9iY6wfoYs21Co9uGMGFFiJg8Ho3SA8B90Nkpg78KToysvNwtvML9HZ3-1o9JKun-8dquUoUS0lIdCOlNrlmWSYYNCC55iqO1oY2kjecslQVJGNNkZO85PF6TTjEL1CjY0bYAl1u-8ad1hP4UPetV9B10sIw-ZrmjFCaCkH_R0WZp1SkpIzo1RZVbvDegalH1_bSfdWU1Btp6iqrnn-lWUb4Ytd3anrQe_RPC_YDiRWMhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697216209</pqid></control><display><type>article</type><title>Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Chih-Chieh ; Kuo, David M T ; Chang, Yia-Chung</creator><creatorcontrib>Chen, Chih-Chieh ; Kuo, David M T ; Chang, Yia-Chung</creatorcontrib><description>The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp02657a</identifier><identifier>PMID: 26144845</identifier><language>eng</language><publisher>England</publisher><subject>Blocking ; Coefficients ; Interference ; Mathematical models ; Maximum power ; Nanostructure ; Quantum dots ; Thermoelectricity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (29), p.19386-19393</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-dbaadf7d35563ebea4d4cfecdf1ba4b4132c8053b870794084d04e9081fd40803</citedby><cites>FETCH-LOGICAL-c320t-dbaadf7d35563ebea4d4cfecdf1ba4b4132c8053b870794084d04e9081fd40803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26144845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chih-Chieh</creatorcontrib><creatorcontrib>Kuo, David M T</creatorcontrib><creatorcontrib>Chang, Yia-Chung</creatorcontrib><title>Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.</description><subject>Blocking</subject><subject>Coefficients</subject><subject>Interference</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Nanostructure</subject><subject>Quantum dots</subject><subject>Thermoelectricity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkctKxDAUhoMozji68QEkSxGqSZOm7XIo3mBABV2XNDnRSpt2knThxmc344yzdXE4Fz7O7UfonJJrSlh5ozI1klRkuTxAc8oFS0pS8MN9nIsZOvH-kxBCM8qO0SwVlPOCZ3P0_TJJG6YetzaAM-DAKsDSauyDm1SYHCQaRrAabMCDa9ogu8S0XdfadwzGgAoeDxaHD9iY6wfoYs21Co9uGMGFFiJg8Ho3SA8B90Nkpg78KToysvNwtvML9HZ3-1o9JKun-8dquUoUS0lIdCOlNrlmWSYYNCC55iqO1oY2kjecslQVJGNNkZO85PF6TTjEL1CjY0bYAl1u-8ad1hP4UPetV9B10sIw-ZrmjFCaCkH_R0WZp1SkpIzo1RZVbvDegalH1_bSfdWU1Btp6iqrnn-lWUb4Ytd3anrQe_RPC_YDiRWMhw</recordid><startdate>20150715</startdate><enddate>20150715</enddate><creator>Chen, Chih-Chieh</creator><creator>Kuo, David M T</creator><creator>Chang, Yia-Chung</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150715</creationdate><title>Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules</title><author>Chen, Chih-Chieh ; Kuo, David M T ; Chang, Yia-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-dbaadf7d35563ebea4d4cfecdf1ba4b4132c8053b870794084d04e9081fd40803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blocking</topic><topic>Coefficients</topic><topic>Interference</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Nanostructure</topic><topic>Quantum dots</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chih-Chieh</creatorcontrib><creatorcontrib>Kuo, David M T</creatorcontrib><creatorcontrib>Chang, Yia-Chung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chih-Chieh</au><au>Kuo, David M T</au><au>Chang, Yia-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-07-15</date><risdate>2015</risdate><volume>17</volume><issue>29</issue><spage>19386</spage><epage>19393</epage><pages>19386-19393</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.</abstract><cop>England</cop><pmid>26144845</pmid><doi>10.1039/c5cp02657a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (29), p.19386-19393
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1730112661
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Blocking
Coefficients
Interference
Mathematical models
Maximum power
Nanostructure
Quantum dots
Thermoelectricity
title Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20interference%20and%20structure-dependent%20orbital-filling%20effects%20on%20the%20thermoelectric%20properties%20of%20quantum%20dot%20molecules&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chen,%20Chih-Chieh&rft.date=2015-07-15&rft.volume=17&rft.issue=29&rft.spage=19386&rft.epage=19393&rft.pages=19386-19393&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp02657a&rft_dat=%3Cproquest_cross%3E1697216209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697216209&rft_id=info:pmid/26144845&rfr_iscdi=true