Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition

This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000cm−1 were preprocessed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food research international 2013-04, Vol.51 (1), p.53-58
Hauptverfasser: Ferreira, Daniela Souza, Pallone, Juliana Azevedo Lima, Poppi, Ronei Jesus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 53
container_title Food research international
container_volume 51
creator Ferreira, Daniela Souza
Pallone, Juliana Azevedo Lima
Poppi, Ronei Jesus
description This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000cm−1 were preprocessed by several combinations of mathematical treatments: MSC (multiplicative scatter correction), SNV (standard normal variate) or first and second derivative and all data were mean centered before the calibration, for which was used the PLS method (partial least squares). The best calibration models found in this study were the ones used to determine protein and moisture contents (R2=0.81, RMSEP=1.61% and R2=0.80, RMSEC=1.55%, respectively). However, the technique shows high predictability for all parameters, including lipids, ashes and carbohydrates, with RMSECV of 0.40 to 2.30% and RMSEP of 0.38 to 3.71%. This result shows the viability of using NIR in controlling the quality parameters of soybeans. ► We examined the ability of NIRS to estimate the composition of Brazilian soybean. ► PLS models were developed for moisture, protein, lipid, ash and carbohydrate. ► It was possible to predict the parameters in a range of soybean varieties.
doi_str_mv 10.1016/j.foodres.2012.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730112483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963996912003742</els_id><sourcerecordid>1730112483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-460e4627951089bcb8c5bf8beb7521f84d90d6e669d0b1e2ea9b8813f43493403</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEEkvhERC-IG0PScdx7MQnBBVbKi2tRNsTQpbjjJFXSRzsLGJ5AJ4bR7vqtae5fPPP6P-y7C2FggIVF7vCet8FjEUJtCxAFkD5s2xFm5rlNa3482wFUrBcSiFfZq9i3AGA4LVcZf82fh8cBjIHPUbrw0BG1CF3ow06YEfihGYOPho_Hch6c5_fXH-7Oyd6mnpn9Oz8SGZPMM5u0DOST0H_db3TI4n-0GKa36_6g3EjkkH_IettcU6-Ygiu_0GMHyYf3ZLxOnthdR_xzWmeZQ-bz_eXX_Lt7dX15cdtbqpazHklACtR1pJTaGRr2sbw1jYttjUvqW2qTkInUAjZQUuxRC3bpqHMVqySrAJ2lq2PuVPwv_bpazW4aLDv9Yh-HxWtGVBaVg17GuU0hZYN1AnlR9SkomJAq6aQ6ggHRUEtitROnRSpRZECqZKitPf-dEJHo_vU-GhcfFwua8q4ZCJx746c1V7pnyExD3cpiC8aQbAl6cORwFTe7-RTReNwNNi5kPypzrsnfvkP0mOzhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513492807</pqid></control><display><type>article</type><title>Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferreira, Daniela Souza ; Pallone, Juliana Azevedo Lima ; Poppi, Ronei Jesus</creator><creatorcontrib>Ferreira, Daniela Souza ; Pallone, Juliana Azevedo Lima ; Poppi, Ronei Jesus</creatorcontrib><description>This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000cm−1 were preprocessed by several combinations of mathematical treatments: MSC (multiplicative scatter correction), SNV (standard normal variate) or first and second derivative and all data were mean centered before the calibration, for which was used the PLS method (partial least squares). The best calibration models found in this study were the ones used to determine protein and moisture contents (R2=0.81, RMSEP=1.61% and R2=0.80, RMSEC=1.55%, respectively). However, the technique shows high predictability for all parameters, including lipids, ashes and carbohydrates, with RMSECV of 0.40 to 2.30% and RMSEP of 0.38 to 3.71%. This result shows the viability of using NIR in controlling the quality parameters of soybeans. ► We examined the ability of NIRS to estimate the composition of Brazilian soybean. ► PLS models were developed for moisture, protein, lipid, ash and carbohydrate. ► It was possible to predict the parameters in a range of soybean varieties.</description><identifier>ISSN: 0963-9969</identifier><identifier>EISSN: 1873-7145</identifier><identifier>DOI: 10.1016/j.foodres.2012.09.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ashes ; Biological and medical sciences ; Brazil ; Calibration ; carbohydrates ; Composition analysis ; Estimates ; Food industries ; Fruit and vegetable industries ; Fundamental and applied biological sciences. Psychology ; Glycine max ; least squares ; Lipids ; Mathematical analysis ; Mathematical models ; Multivariate data analysis ; Near-infrared reflectance spectroscopy ; near-infrared spectroscopy ; Soybean ; Soybeans ; viability</subject><ispartof>Food research international, 2013-04, Vol.51 (1), p.53-58</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-460e4627951089bcb8c5bf8beb7521f84d90d6e669d0b1e2ea9b8813f43493403</citedby><cites>FETCH-LOGICAL-c476t-460e4627951089bcb8c5bf8beb7521f84d90d6e669d0b1e2ea9b8813f43493403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.foodres.2012.09.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Daniela Souza</creatorcontrib><creatorcontrib>Pallone, Juliana Azevedo Lima</creatorcontrib><creatorcontrib>Poppi, Ronei Jesus</creatorcontrib><title>Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition</title><title>Food research international</title><description>This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000cm−1 were preprocessed by several combinations of mathematical treatments: MSC (multiplicative scatter correction), SNV (standard normal variate) or first and second derivative and all data were mean centered before the calibration, for which was used the PLS method (partial least squares). The best calibration models found in this study were the ones used to determine protein and moisture contents (R2=0.81, RMSEP=1.61% and R2=0.80, RMSEC=1.55%, respectively). However, the technique shows high predictability for all parameters, including lipids, ashes and carbohydrates, with RMSECV of 0.40 to 2.30% and RMSEP of 0.38 to 3.71%. This result shows the viability of using NIR in controlling the quality parameters of soybeans. ► We examined the ability of NIRS to estimate the composition of Brazilian soybean. ► PLS models were developed for moisture, protein, lipid, ash and carbohydrate. ► It was possible to predict the parameters in a range of soybean varieties.</description><subject>Ashes</subject><subject>Biological and medical sciences</subject><subject>Brazil</subject><subject>Calibration</subject><subject>carbohydrates</subject><subject>Composition analysis</subject><subject>Estimates</subject><subject>Food industries</subject><subject>Fruit and vegetable industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine max</subject><subject>least squares</subject><subject>Lipids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multivariate data analysis</subject><subject>Near-infrared reflectance spectroscopy</subject><subject>near-infrared spectroscopy</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>viability</subject><issn>0963-9969</issn><issn>1873-7145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhiMEEkvhERC-IG0PScdx7MQnBBVbKi2tRNsTQpbjjJFXSRzsLGJ5AJ4bR7vqtae5fPPP6P-y7C2FggIVF7vCet8FjEUJtCxAFkD5s2xFm5rlNa3482wFUrBcSiFfZq9i3AGA4LVcZf82fh8cBjIHPUbrw0BG1CF3ow06YEfihGYOPho_Hch6c5_fXH-7Oyd6mnpn9Oz8SGZPMM5u0DOST0H_db3TI4n-0GKa36_6g3EjkkH_IettcU6-Ygiu_0GMHyYf3ZLxOnthdR_xzWmeZQ-bz_eXX_Lt7dX15cdtbqpazHklACtR1pJTaGRr2sbw1jYttjUvqW2qTkInUAjZQUuxRC3bpqHMVqySrAJ2lq2PuVPwv_bpazW4aLDv9Yh-HxWtGVBaVg17GuU0hZYN1AnlR9SkomJAq6aQ6ggHRUEtitROnRSpRZECqZKitPf-dEJHo_vU-GhcfFwua8q4ZCJx746c1V7pnyExD3cpiC8aQbAl6cORwFTe7-RTReNwNNi5kPypzrsnfvkP0mOzhA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ferreira, Daniela Souza</creator><creator>Pallone, Juliana Azevedo Lima</creator><creator>Poppi, Ronei Jesus</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition</title><author>Ferreira, Daniela Souza ; Pallone, Juliana Azevedo Lima ; Poppi, Ronei Jesus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-460e4627951089bcb8c5bf8beb7521f84d90d6e669d0b1e2ea9b8813f43493403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ashes</topic><topic>Biological and medical sciences</topic><topic>Brazil</topic><topic>Calibration</topic><topic>carbohydrates</topic><topic>Composition analysis</topic><topic>Estimates</topic><topic>Food industries</topic><topic>Fruit and vegetable industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine max</topic><topic>least squares</topic><topic>Lipids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multivariate data analysis</topic><topic>Near-infrared reflectance spectroscopy</topic><topic>near-infrared spectroscopy</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Daniela Souza</creatorcontrib><creatorcontrib>Pallone, Juliana Azevedo Lima</creatorcontrib><creatorcontrib>Poppi, Ronei Jesus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Food research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Daniela Souza</au><au>Pallone, Juliana Azevedo Lima</au><au>Poppi, Ronei Jesus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition</atitle><jtitle>Food research international</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>53</spage><epage>58</epage><pages>53-58</pages><issn>0963-9969</issn><eissn>1873-7145</eissn><abstract>This study examined the ability of near-infrared reflectance spectroscopy method (FT-NIRS) and multivariate calibration to estimate the concentration of moisture, protein, lipid, ash and carbohydrate of Brazilian soybeans. The spectra obtained in the range of 4000 to 10,000cm−1 were preprocessed by several combinations of mathematical treatments: MSC (multiplicative scatter correction), SNV (standard normal variate) or first and second derivative and all data were mean centered before the calibration, for which was used the PLS method (partial least squares). The best calibration models found in this study were the ones used to determine protein and moisture contents (R2=0.81, RMSEP=1.61% and R2=0.80, RMSEC=1.55%, respectively). However, the technique shows high predictability for all parameters, including lipids, ashes and carbohydrates, with RMSECV of 0.40 to 2.30% and RMSEP of 0.38 to 3.71%. This result shows the viability of using NIR in controlling the quality parameters of soybeans. ► We examined the ability of NIRS to estimate the composition of Brazilian soybean. ► PLS models were developed for moisture, protein, lipid, ash and carbohydrate. ► It was possible to predict the parameters in a range of soybean varieties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.foodres.2012.09.015</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-9969
ispartof Food research international, 2013-04, Vol.51 (1), p.53-58
issn 0963-9969
1873-7145
language eng
recordid cdi_proquest_miscellaneous_1730112483
source ScienceDirect Journals (5 years ago - present)
subjects Ashes
Biological and medical sciences
Brazil
Calibration
carbohydrates
Composition analysis
Estimates
Food industries
Fruit and vegetable industries
Fundamental and applied biological sciences. Psychology
Glycine max
least squares
Lipids
Mathematical analysis
Mathematical models
Multivariate data analysis
Near-infrared reflectance spectroscopy
near-infrared spectroscopy
Soybean
Soybeans
viability
title Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20transform%20near-infrared%20spectroscopy%20(FT-NIRS)%20application%20to%20estimate%20Brazilian%20soybean%20%5BGlycine%20max%20(L.)%20Merril%5D%20composition&rft.jtitle=Food%20research%20international&rft.au=Ferreira,%20Daniela%20Souza&rft.date=2013-04-01&rft.volume=51&rft.issue=1&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.issn=0963-9969&rft.eissn=1873-7145&rft_id=info:doi/10.1016/j.foodres.2012.09.015&rft_dat=%3Cproquest_cross%3E1730112483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513492807&rft_id=info:pmid/&rft_els_id=S0963996912003742&rfr_iscdi=true