Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids

Energy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (29), p.19491-19499
Hauptverfasser: Balevičius, Jr, Vytautas, Pour, Arpa Galestian, Savolainen, Janne, Lincoln, Craig N, Lukeš, Vladimír, Riedle, Eberhard, Valkunas, Leonas, Abramavicius, Darius, Hauer, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19499
container_issue 29
container_start_page 19491
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Balevičius, Jr, Vytautas
Pour, Arpa Galestian
Savolainen, Janne
Lincoln, Craig N
Lukeš, Vladimír
Riedle, Eberhard
Valkunas, Leonas
Abramavicius, Darius
Hauer, Jürgen
description Energy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states. By applying this vibronic energy relaxation approach to carotenoids, we show that β-carotene's transient absorption signal can be understood without invoking the intensely debated S* electronic state. For a carotenoid with longer chain length, we find that vibronic energy relaxation does not suffice to explain all features in the transient absorption spectra, which we relate to an increased ground state structural inhomogeneity. Our modeling approach is generally applicable to photophysical deactivation processes in molecules. As such, it represents a well-founded alternative to data fitting techniques such as global target analysis.
doi_str_mv 10.1039/c5cp00856e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730111569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1697210884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-920123ead2bad5c7f082694b4ea0e3653eb4dc0d47b823ed7db8985951dcf91f3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFFurF3-A5ChCdDf7kd2jhPoBBT1Yr2GzO2lW0iTuptb-e1Nbe_UwzMA8DMOL0CXBtwRTdWe46TCWXMARGhMmaKywZMeHORUjdBbCB8aYcEJP0SgR25VgYzR_d4VvG2ciaMAvNpGHWn_r3rVNpLvOt9pUUeUWVT1U75pFZEGb3n3tSKf7aq03IXJNZLRve2haZ8M5Oil1HeBi3ydo_jB9y57i2cvjc3Y_iw1L0j5WCSYJBW2TQltu0hLLRChWMNAYqOAUCmYNtiwt5OBsagupJFecWFMqUtIJut7dHR79XEHo86ULBupaN9CuQk5SigkhXKj_qVBpQrCUbKA3O2p8G4KHMu-8W2q_yQnOt4nnGc9efxOfDvhqf3dVLMEe6F_E9Ac1o3zT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697210884</pqid></control><display><type>article</type><title>Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Balevičius, Jr, Vytautas ; Pour, Arpa Galestian ; Savolainen, Janne ; Lincoln, Craig N ; Lukeš, Vladimír ; Riedle, Eberhard ; Valkunas, Leonas ; Abramavicius, Darius ; Hauer, Jürgen</creator><creatorcontrib>Balevičius, Jr, Vytautas ; Pour, Arpa Galestian ; Savolainen, Janne ; Lincoln, Craig N ; Lukeš, Vladimír ; Riedle, Eberhard ; Valkunas, Leonas ; Abramavicius, Darius ; Hauer, Jürgen</creatorcontrib><description>Energy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states. By applying this vibronic energy relaxation approach to carotenoids, we show that β-carotene's transient absorption signal can be understood without invoking the intensely debated S* electronic state. For a carotenoid with longer chain length, we find that vibronic energy relaxation does not suffice to explain all features in the transient absorption spectra, which we relate to an increased ground state structural inhomogeneity. Our modeling approach is generally applicable to photophysical deactivation processes in molecules. As such, it represents a well-founded alternative to data fitting techniques such as global target analysis.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp00856e</identifier><identifier>PMID: 26146364</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; beta Carotene - chemistry ; Carotenoids ; Carotenoids - chemistry ; Deactivation ; Electron states ; Fittings ; Ground state ; Inhomogeneity ; Molecular Structure ; Physical chemistry ; Quantum mechanics ; Quantum Theory ; Vibration</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19491-19499</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-920123ead2bad5c7f082694b4ea0e3653eb4dc0d47b823ed7db8985951dcf91f3</citedby><cites>FETCH-LOGICAL-c427t-920123ead2bad5c7f082694b4ea0e3653eb4dc0d47b823ed7db8985951dcf91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26146364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balevičius, Jr, Vytautas</creatorcontrib><creatorcontrib>Pour, Arpa Galestian</creatorcontrib><creatorcontrib>Savolainen, Janne</creatorcontrib><creatorcontrib>Lincoln, Craig N</creatorcontrib><creatorcontrib>Lukeš, Vladimír</creatorcontrib><creatorcontrib>Riedle, Eberhard</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Abramavicius, Darius</creatorcontrib><creatorcontrib>Hauer, Jürgen</creatorcontrib><title>Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Energy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states. By applying this vibronic energy relaxation approach to carotenoids, we show that β-carotene's transient absorption signal can be understood without invoking the intensely debated S* electronic state. For a carotenoid with longer chain length, we find that vibronic energy relaxation does not suffice to explain all features in the transient absorption spectra, which we relate to an increased ground state structural inhomogeneity. Our modeling approach is generally applicable to photophysical deactivation processes in molecules. As such, it represents a well-founded alternative to data fitting techniques such as global target analysis.</description><subject>Algorithms</subject><subject>beta Carotene - chemistry</subject><subject>Carotenoids</subject><subject>Carotenoids - chemistry</subject><subject>Deactivation</subject><subject>Electron states</subject><subject>Fittings</subject><subject>Ground state</subject><subject>Inhomogeneity</subject><subject>Molecular Structure</subject><subject>Physical chemistry</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Vibration</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1Lw0AQBuBFFFurF3-A5ChCdDf7kd2jhPoBBT1Yr2GzO2lW0iTuptb-e1Nbe_UwzMA8DMOL0CXBtwRTdWe46TCWXMARGhMmaKywZMeHORUjdBbCB8aYcEJP0SgR25VgYzR_d4VvG2ciaMAvNpGHWn_r3rVNpLvOt9pUUeUWVT1U75pFZEGb3n3tSKf7aq03IXJNZLRve2haZ8M5Oil1HeBi3ydo_jB9y57i2cvjc3Y_iw1L0j5WCSYJBW2TQltu0hLLRChWMNAYqOAUCmYNtiwt5OBsagupJFecWFMqUtIJut7dHR79XEHo86ULBupaN9CuQk5SigkhXKj_qVBpQrCUbKA3O2p8G4KHMu-8W2q_yQnOt4nnGc9efxOfDvhqf3dVLMEe6F_E9Ac1o3zT</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Balevičius, Jr, Vytautas</creator><creator>Pour, Arpa Galestian</creator><creator>Savolainen, Janne</creator><creator>Lincoln, Craig N</creator><creator>Lukeš, Vladimír</creator><creator>Riedle, Eberhard</creator><creator>Valkunas, Leonas</creator><creator>Abramavicius, Darius</creator><creator>Hauer, Jürgen</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids</title><author>Balevičius, Jr, Vytautas ; Pour, Arpa Galestian ; Savolainen, Janne ; Lincoln, Craig N ; Lukeš, Vladimír ; Riedle, Eberhard ; Valkunas, Leonas ; Abramavicius, Darius ; Hauer, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-920123ead2bad5c7f082694b4ea0e3653eb4dc0d47b823ed7db8985951dcf91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>beta Carotene - chemistry</topic><topic>Carotenoids</topic><topic>Carotenoids - chemistry</topic><topic>Deactivation</topic><topic>Electron states</topic><topic>Fittings</topic><topic>Ground state</topic><topic>Inhomogeneity</topic><topic>Molecular Structure</topic><topic>Physical chemistry</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balevičius, Jr, Vytautas</creatorcontrib><creatorcontrib>Pour, Arpa Galestian</creatorcontrib><creatorcontrib>Savolainen, Janne</creatorcontrib><creatorcontrib>Lincoln, Craig N</creatorcontrib><creatorcontrib>Lukeš, Vladimír</creatorcontrib><creatorcontrib>Riedle, Eberhard</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Abramavicius, Darius</creatorcontrib><creatorcontrib>Hauer, Jürgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balevičius, Jr, Vytautas</au><au>Pour, Arpa Galestian</au><au>Savolainen, Janne</au><au>Lincoln, Craig N</au><au>Lukeš, Vladimír</au><au>Riedle, Eberhard</au><au>Valkunas, Leonas</au><au>Abramavicius, Darius</au><au>Hauer, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>17</volume><issue>29</issue><spage>19491</spage><epage>19499</epage><pages>19491-19499</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Energy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states. By applying this vibronic energy relaxation approach to carotenoids, we show that β-carotene's transient absorption signal can be understood without invoking the intensely debated S* electronic state. For a carotenoid with longer chain length, we find that vibronic energy relaxation does not suffice to explain all features in the transient absorption spectra, which we relate to an increased ground state structural inhomogeneity. Our modeling approach is generally applicable to photophysical deactivation processes in molecules. As such, it represents a well-founded alternative to data fitting techniques such as global target analysis.</abstract><cop>England</cop><pmid>26146364</pmid><doi>10.1039/c5cp00856e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19491-19499
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1730111569
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Algorithms
beta Carotene - chemistry
Carotenoids
Carotenoids - chemistry
Deactivation
Electron states
Fittings
Ground state
Inhomogeneity
Molecular Structure
Physical chemistry
Quantum mechanics
Quantum Theory
Vibration
title Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibronic%20energy%20relaxation%20approach%20highlighting%20deactivation%20pathways%20in%20carotenoids&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Balevi%C4%8Dius,%20Jr,%20Vytautas&rft.date=2015-01-01&rft.volume=17&rft.issue=29&rft.spage=19491&rft.epage=19499&rft.pages=19491-19499&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp00856e&rft_dat=%3Cproquest_cross%3E1697210884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697210884&rft_id=info:pmid/26146364&rfr_iscdi=true