Numerical calculations of heat engineering parameters of a solar greenhouse dryer
The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Si...
Gespeichert in:
Veröffentlicht in: | Applied solar energy 2015-04, Vol.51 (2), p.107-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 2 |
container_start_page | 107 |
container_title | Applied solar energy |
container_volume | 51 |
creator | Akhatov, Zh. S. Khalimov, A. S. |
description | The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Simulation software. The given CAD model consists of a concrete foundation and a steel frame in which translucent coatings made from two-layer polycarbonate sheets 6 mm in thickness with an air gap between the two layers are attached. The north wall is made of bricks with size and thickness of 2 × 4 m
2
and 0.4 m, respectively. The front surface has an angle of inclination 39.53° with respect to the horizontal surface for the maximum incidence of solar radiation to its surface. All the geometrical dimensions of the solar greenhouse dryer were selected on the basis of the allocated platform for the solar drying installation 3 × 4 m
2
in size. It is shown that the optimum volume of the heat storage tank for the present installation is 500 L. |
doi_str_mv | 10.3103/S0003701X15020024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730108280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730108280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-867f3b8b011d972415636af875f7103ae6a2905654a5be58228a103896d022543</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wFvAi5fVyXf2KMUvKIqo4G1Jt7Ptlv0y2T3035u1HkQRPIQheZ93JjNDyCmDC8FAXD4DgDDA3pgCDsDlHpmwVMgklVzuk8koJ6N-SI5C2MQbcMsm5OlhqNGXuatoPPlQub5sm0Dbgq7R9RSbVdlgJJoV7Zx3NfboP2VHQ1s5T1cesVm3Q0C69Fv0x-SgcFXAk684Ja831y-zu2T-eHs_u5onOU-NTKw2hVjYBTC2TA2XTGmhXWGNKkxsyKF2PAWllXRqgcpybl18t6leAudKiik53-XtfPs-YOizugw5VpVrMP4mY0YAA8st_AOFlGmpNI_o2Q900w6-iY2MFEhhLYy12Y7KfRuCxyLrfFk7v80YZOM-sl_7iB6-84RunCb6b5n_NH0AlByJfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700438804</pqid></control><display><type>article</type><title>Numerical calculations of heat engineering parameters of a solar greenhouse dryer</title><source>Springer Nature - Complete Springer Journals</source><creator>Akhatov, Zh. S. ; Khalimov, A. S.</creator><creatorcontrib>Akhatov, Zh. S. ; Khalimov, A. S.</creatorcontrib><description>The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Simulation software. The given CAD model consists of a concrete foundation and a steel frame in which translucent coatings made from two-layer polycarbonate sheets 6 mm in thickness with an air gap between the two layers are attached. The north wall is made of bricks with size and thickness of 2 × 4 m
2
and 0.4 m, respectively. The front surface has an angle of inclination 39.53° with respect to the horizontal surface for the maximum incidence of solar radiation to its surface. All the geometrical dimensions of the solar greenhouse dryer were selected on the basis of the allocated platform for the solar drying installation 3 × 4 m
2
in size. It is shown that the optimum volume of the heat storage tank for the present installation is 500 L.</description><identifier>ISSN: 0003-701X</identifier><identifier>EISSN: 1934-9424</identifier><identifier>DOI: 10.3103/S0003701X15020024</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Alternative energy sources ; CAD ; Computer aided design ; Computer simulation ; Design engineering ; Driers ; Electrical Machines and Networks ; Energy resources ; Engineering ; Greenhouses ; Heat ; Heat transfer ; Installation ; Mathematical models ; Numerical analysis ; Optimization ; Power Electronics ; Radiation ; Sheet metal ; Simulation ; Solar energy ; Solar Power Plants and Their Application ; Solar radiation ; Storage tanks ; Studies ; Viscosity</subject><ispartof>Applied solar energy, 2015-04, Vol.51 (2), p.107-111</ispartof><rights>Allerton Press, Inc. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-867f3b8b011d972415636af875f7103ae6a2905654a5be58228a103896d022543</citedby><cites>FETCH-LOGICAL-c2974-867f3b8b011d972415636af875f7103ae6a2905654a5be58228a103896d022543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0003701X15020024$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0003701X15020024$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Akhatov, Zh. S.</creatorcontrib><creatorcontrib>Khalimov, A. S.</creatorcontrib><title>Numerical calculations of heat engineering parameters of a solar greenhouse dryer</title><title>Applied solar energy</title><addtitle>Appl. Sol. Energy</addtitle><description>The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Simulation software. The given CAD model consists of a concrete foundation and a steel frame in which translucent coatings made from two-layer polycarbonate sheets 6 mm in thickness with an air gap between the two layers are attached. The north wall is made of bricks with size and thickness of 2 × 4 m
2
and 0.4 m, respectively. The front surface has an angle of inclination 39.53° with respect to the horizontal surface for the maximum incidence of solar radiation to its surface. All the geometrical dimensions of the solar greenhouse dryer were selected on the basis of the allocated platform for the solar drying installation 3 × 4 m
2
in size. It is shown that the optimum volume of the heat storage tank for the present installation is 500 L.</description><subject>Alternative energy sources</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Driers</subject><subject>Electrical Machines and Networks</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Greenhouses</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Installation</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Power Electronics</subject><subject>Radiation</subject><subject>Sheet metal</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar Power Plants and Their Application</subject><subject>Solar radiation</subject><subject>Storage tanks</subject><subject>Studies</subject><subject>Viscosity</subject><issn>0003-701X</issn><issn>1934-9424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_wFvAi5fVyXf2KMUvKIqo4G1Jt7Ptlv0y2T3035u1HkQRPIQheZ93JjNDyCmDC8FAXD4DgDDA3pgCDsDlHpmwVMgklVzuk8koJ6N-SI5C2MQbcMsm5OlhqNGXuatoPPlQub5sm0Dbgq7R9RSbVdlgJJoV7Zx3NfboP2VHQ1s5T1cesVm3Q0C69Fv0x-SgcFXAk684Ja831y-zu2T-eHs_u5onOU-NTKw2hVjYBTC2TA2XTGmhXWGNKkxsyKF2PAWllXRqgcpybl18t6leAudKiik53-XtfPs-YOizugw5VpVrMP4mY0YAA8st_AOFlGmpNI_o2Q900w6-iY2MFEhhLYy12Y7KfRuCxyLrfFk7v80YZOM-sl_7iB6-84RunCb6b5n_NH0AlByJfA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Akhatov, Zh. S.</creator><creator>Khalimov, A. S.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope><scope>KR7</scope></search><sort><creationdate>20150401</creationdate><title>Numerical calculations of heat engineering parameters of a solar greenhouse dryer</title><author>Akhatov, Zh. S. ; Khalimov, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-867f3b8b011d972415636af875f7103ae6a2905654a5be58228a103896d022543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alternative energy sources</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Driers</topic><topic>Electrical Machines and Networks</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Greenhouses</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Installation</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Power Electronics</topic><topic>Radiation</topic><topic>Sheet metal</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar Power Plants and Their Application</topic><topic>Solar radiation</topic><topic>Storage tanks</topic><topic>Studies</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhatov, Zh. S.</creatorcontrib><creatorcontrib>Khalimov, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhatov, Zh. S.</au><au>Khalimov, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical calculations of heat engineering parameters of a solar greenhouse dryer</atitle><jtitle>Applied solar energy</jtitle><stitle>Appl. Sol. Energy</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>51</volume><issue>2</issue><spage>107</spage><epage>111</epage><pages>107-111</pages><issn>0003-701X</issn><eissn>1934-9424</eissn><abstract>The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Simulation software. The given CAD model consists of a concrete foundation and a steel frame in which translucent coatings made from two-layer polycarbonate sheets 6 mm in thickness with an air gap between the two layers are attached. The north wall is made of bricks with size and thickness of 2 × 4 m
2
and 0.4 m, respectively. The front surface has an angle of inclination 39.53° with respect to the horizontal surface for the maximum incidence of solar radiation to its surface. All the geometrical dimensions of the solar greenhouse dryer were selected on the basis of the allocated platform for the solar drying installation 3 × 4 m
2
in size. It is shown that the optimum volume of the heat storage tank for the present installation is 500 L.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S0003701X15020024</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-701X |
ispartof | Applied solar energy, 2015-04, Vol.51 (2), p.107-111 |
issn | 0003-701X 1934-9424 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730108280 |
source | Springer Nature - Complete Springer Journals |
subjects | Alternative energy sources CAD Computer aided design Computer simulation Design engineering Driers Electrical Machines and Networks Energy resources Engineering Greenhouses Heat Heat transfer Installation Mathematical models Numerical analysis Optimization Power Electronics Radiation Sheet metal Simulation Solar energy Solar Power Plants and Their Application Solar radiation Storage tanks Studies Viscosity |
title | Numerical calculations of heat engineering parameters of a solar greenhouse dryer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20calculations%20of%20heat%20engineering%20parameters%20of%20a%20solar%20greenhouse%20dryer&rft.jtitle=Applied%20solar%20energy&rft.au=Akhatov,%20Zh.%20S.&rft.date=2015-04-01&rft.volume=51&rft.issue=2&rft.spage=107&rft.epage=111&rft.pages=107-111&rft.issn=0003-701X&rft.eissn=1934-9424&rft_id=info:doi/10.3103/S0003701X15020024&rft_dat=%3Cproquest_cross%3E1730108280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700438804&rft_id=info:pmid/&rfr_iscdi=true |