Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming
Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimi...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2014-05, Vol.60 (5), p.1728-1739 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1739 |
---|---|
container_issue | 5 |
container_start_page | 1728 |
container_title | AIChE journal |
container_volume | 60 |
creator | Telen, Dries Logist, Filip Quirynen, Rien Houska, Boris Diehl, Moritz Van Impe, Jan |
description | Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014 |
doi_str_mv | 10.1002/aic.14389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730105262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541423935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</originalsourceid><addsrcrecordid>eNqFkUtP3DAUhS3USp1SFv0HlrqBRcDPcbKEUXlIUFSVqkvLca4HQ-JM7YzK_Pve6UAXSFVXfn3n2D6HkI-cHXPGxImL_pgrWTd7ZMa1MpVumH5DZowxXuEGf0fel_KAK2FqMSPj7WqKg-spPK0gxwHSRDsocZloGDNNY-pjApdpt0luiJ4etnE88veAc1SVTZlgKHRdYlrSAj_XaBC3Bwh0EGKKE9BVHpfZDQMyH8jb4PoCB8_jPvl-_vlucVld315cLU6vK68Zb6pWtcYxOfdS11zrummBm64z3kkA33S1qAMLygfVgVPGcdO2TVDaiDbIoKTcJ4c7X7wbH1UmO8Tioe9dgnFdLDeScabFXPwfxdSUkI3UiH56hT6M65zwI0jxWmPufGt4tKN8HkvJEOwKk3V5Yzmz25YstmT_tITsyY79FXvY_Bu0p1eLF0W1U0SM_umvwuVHOzfSaPvjy4U9F-qbuLk8s1_lb_6LpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518538912</pqid></control><display><type>article</type><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><source>Access via Wiley Online Library</source><creator>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</creator><creatorcontrib>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</creatorcontrib><description>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14389</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biochemistry ; bioprocesses ; dynamic optimization ; Dynamical systems ; Experiment design ; Experiments ; Mathematical programming ; Nonlinear dynamics ; optimal experiment design ; Optimization ; Parameter estimation ; Quadratic programming ; Semidefinite programming ; Uncertainty</subject><ispartof>AIChE journal, 2014-05, Vol.60 (5), p.1728-1739</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</citedby><cites>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Telen, Dries</creatorcontrib><creatorcontrib>Logist, Filip</creatorcontrib><creatorcontrib>Quirynen, Rien</creatorcontrib><creatorcontrib>Houska, Boris</creatorcontrib><creatorcontrib>Diehl, Moritz</creatorcontrib><creatorcontrib>Van Impe, Jan</creatorcontrib><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>bioprocesses</subject><subject>dynamic optimization</subject><subject>Dynamical systems</subject><subject>Experiment design</subject><subject>Experiments</subject><subject>Mathematical programming</subject><subject>Nonlinear dynamics</subject><subject>optimal experiment design</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Quadratic programming</subject><subject>Semidefinite programming</subject><subject>Uncertainty</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3DAUhS3USp1SFv0HlrqBRcDPcbKEUXlIUFSVqkvLca4HQ-JM7YzK_Pve6UAXSFVXfn3n2D6HkI-cHXPGxImL_pgrWTd7ZMa1MpVumH5DZowxXuEGf0fel_KAK2FqMSPj7WqKg-spPK0gxwHSRDsocZloGDNNY-pjApdpt0luiJ4etnE88veAc1SVTZlgKHRdYlrSAj_XaBC3Bwh0EGKKE9BVHpfZDQMyH8jb4PoCB8_jPvl-_vlucVld315cLU6vK68Zb6pWtcYxOfdS11zrummBm64z3kkA33S1qAMLygfVgVPGcdO2TVDaiDbIoKTcJ4c7X7wbH1UmO8Tioe9dgnFdLDeScabFXPwfxdSUkI3UiH56hT6M65zwI0jxWmPufGt4tKN8HkvJEOwKk3V5Yzmz25YstmT_tITsyY79FXvY_Bu0p1eLF0W1U0SM_umvwuVHOzfSaPvjy4U9F-qbuLk8s1_lb_6LpBQ</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Telen, Dries</creator><creator>Logist, Filip</creator><creator>Quirynen, Rien</creator><creator>Houska, Boris</creator><creator>Diehl, Moritz</creator><creator>Van Impe, Jan</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201405</creationdate><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><author>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>bioprocesses</topic><topic>dynamic optimization</topic><topic>Dynamical systems</topic><topic>Experiment design</topic><topic>Experiments</topic><topic>Mathematical programming</topic><topic>Nonlinear dynamics</topic><topic>optimal experiment design</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Quadratic programming</topic><topic>Semidefinite programming</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telen, Dries</creatorcontrib><creatorcontrib>Logist, Filip</creatorcontrib><creatorcontrib>Quirynen, Rien</creatorcontrib><creatorcontrib>Houska, Boris</creatorcontrib><creatorcontrib>Diehl, Moritz</creatorcontrib><creatorcontrib>Van Impe, Jan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telen, Dries</au><au>Logist, Filip</au><au>Quirynen, Rien</au><au>Houska, Boris</au><au>Diehl, Moritz</au><au>Van Impe, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-05</date><risdate>2014</risdate><volume>60</volume><issue>5</issue><spage>1728</spage><epage>1739</epage><pages>1728-1739</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14389</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2014-05, Vol.60 (5), p.1728-1739 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730105262 |
source | Access via Wiley Online Library |
subjects | Algorithms Biochemistry bioprocesses dynamic optimization Dynamical systems Experiment design Experiments Mathematical programming Nonlinear dynamics optimal experiment design Optimization Parameter estimation Quadratic programming Semidefinite programming Uncertainty |
title | Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20experiment%20design%20for%20nonlinear%20dynamic%20(bio)chemical%20systems%20using%20sequential%20semidefinite%20programming&rft.jtitle=AIChE%20journal&rft.au=Telen,%20Dries&rft.date=2014-05&rft.volume=60&rft.issue=5&rft.spage=1728&rft.epage=1739&rft.pages=1728-1739&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14389&rft_dat=%3Cproquest_cross%3E1541423935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518538912&rft_id=info:pmid/&rfr_iscdi=true |