Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming

Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2014-05, Vol.60 (5), p.1728-1739
Hauptverfasser: Telen, Dries, Logist, Filip, Quirynen, Rien, Houska, Boris, Diehl, Moritz, Van Impe, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue 5
container_start_page 1728
container_title AIChE journal
container_volume 60
creator Telen, Dries
Logist, Filip
Quirynen, Rien
Houska, Boris
Diehl, Moritz
Van Impe, Jan
description Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014
doi_str_mv 10.1002/aic.14389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730105262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541423935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</originalsourceid><addsrcrecordid>eNqFkUtP3DAUhS3USp1SFv0HlrqBRcDPcbKEUXlIUFSVqkvLca4HQ-JM7YzK_Pve6UAXSFVXfn3n2D6HkI-cHXPGxImL_pgrWTd7ZMa1MpVumH5DZowxXuEGf0fel_KAK2FqMSPj7WqKg-spPK0gxwHSRDsocZloGDNNY-pjApdpt0luiJ4etnE88veAc1SVTZlgKHRdYlrSAj_XaBC3Bwh0EGKKE9BVHpfZDQMyH8jb4PoCB8_jPvl-_vlucVld315cLU6vK68Zb6pWtcYxOfdS11zrummBm64z3kkA33S1qAMLygfVgVPGcdO2TVDaiDbIoKTcJ4c7X7wbH1UmO8Tioe9dgnFdLDeScabFXPwfxdSUkI3UiH56hT6M65zwI0jxWmPufGt4tKN8HkvJEOwKk3V5Yzmz25YstmT_tITsyY79FXvY_Bu0p1eLF0W1U0SM_umvwuVHOzfSaPvjy4U9F-qbuLk8s1_lb_6LpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518538912</pqid></control><display><type>article</type><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><source>Access via Wiley Online Library</source><creator>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</creator><creatorcontrib>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</creatorcontrib><description>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14389</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biochemistry ; bioprocesses ; dynamic optimization ; Dynamical systems ; Experiment design ; Experiments ; Mathematical programming ; Nonlinear dynamics ; optimal experiment design ; Optimization ; Parameter estimation ; Quadratic programming ; Semidefinite programming ; Uncertainty</subject><ispartof>AIChE journal, 2014-05, Vol.60 (5), p.1728-1739</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</citedby><cites>FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Telen, Dries</creatorcontrib><creatorcontrib>Logist, Filip</creatorcontrib><creatorcontrib>Quirynen, Rien</creatorcontrib><creatorcontrib>Houska, Boris</creatorcontrib><creatorcontrib>Diehl, Moritz</creatorcontrib><creatorcontrib>Van Impe, Jan</creatorcontrib><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>bioprocesses</subject><subject>dynamic optimization</subject><subject>Dynamical systems</subject><subject>Experiment design</subject><subject>Experiments</subject><subject>Mathematical programming</subject><subject>Nonlinear dynamics</subject><subject>optimal experiment design</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Quadratic programming</subject><subject>Semidefinite programming</subject><subject>Uncertainty</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3DAUhS3USp1SFv0HlrqBRcDPcbKEUXlIUFSVqkvLca4HQ-JM7YzK_Pve6UAXSFVXfn3n2D6HkI-cHXPGxImL_pgrWTd7ZMa1MpVumH5DZowxXuEGf0fel_KAK2FqMSPj7WqKg-spPK0gxwHSRDsocZloGDNNY-pjApdpt0luiJ4etnE88veAc1SVTZlgKHRdYlrSAj_XaBC3Bwh0EGKKE9BVHpfZDQMyH8jb4PoCB8_jPvl-_vlucVld315cLU6vK68Zb6pWtcYxOfdS11zrummBm64z3kkA33S1qAMLygfVgVPGcdO2TVDaiDbIoKTcJ4c7X7wbH1UmO8Tioe9dgnFdLDeScabFXPwfxdSUkI3UiH56hT6M65zwI0jxWmPufGt4tKN8HkvJEOwKk3V5Yzmz25YstmT_tITsyY79FXvY_Bu0p1eLF0W1U0SM_umvwuVHOzfSaPvjy4U9F-qbuLk8s1_lb_6LpBQ</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Telen, Dries</creator><creator>Logist, Filip</creator><creator>Quirynen, Rien</creator><creator>Houska, Boris</creator><creator>Diehl, Moritz</creator><creator>Van Impe, Jan</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201405</creationdate><title>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</title><author>Telen, Dries ; Logist, Filip ; Quirynen, Rien ; Houska, Boris ; Diehl, Moritz ; Van Impe, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5019-b4b7a036c35815589be17dd7ca3eec9d828f0f4cf4dea47a17bb9f4572bf3f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>bioprocesses</topic><topic>dynamic optimization</topic><topic>Dynamical systems</topic><topic>Experiment design</topic><topic>Experiments</topic><topic>Mathematical programming</topic><topic>Nonlinear dynamics</topic><topic>optimal experiment design</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Quadratic programming</topic><topic>Semidefinite programming</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telen, Dries</creatorcontrib><creatorcontrib>Logist, Filip</creatorcontrib><creatorcontrib>Quirynen, Rien</creatorcontrib><creatorcontrib>Houska, Boris</creatorcontrib><creatorcontrib>Diehl, Moritz</creatorcontrib><creatorcontrib>Van Impe, Jan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telen, Dries</au><au>Logist, Filip</au><au>Quirynen, Rien</au><au>Houska, Boris</au><au>Diehl, Moritz</au><au>Van Impe, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-05</date><risdate>2014</risdate><volume>60</volume><issue>5</issue><spage>1728</spage><epage>1739</epage><pages>1728-1739</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Optimal experiment design (OED) for parameter estimation in nonlinear dynamic (bio)chemical processes is studied in this work. To reduce the uncertainty in an experiment, a suitable measure of the Fisher information matrix or variance–covariance matrix has to be optimized. In this work, novel optimization algorithms based on sequential semidefinite programming (SDP) are proposed. The sequential SDP approach has specific advantages over sequential quadratic programming in the context of OED. First of all, it guarantees on a matrix level a decrease of the uncertainty in the parameter estimation procedure by introducing a linear matrix inequality. Second, it allows an easy formulation of E‐optimal designs in a direct optimal control optimization scheme. Finally, a third advantage of SDP is that problems involving the inverse of a matrix can be easily reformulated. The proposed techniques are illustrated in the design of experiments for a fed‐batch bioreactor and a microbial kinetics case study. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1728–1739, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14389</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2014-05, Vol.60 (5), p.1728-1739
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1730105262
source Access via Wiley Online Library
subjects Algorithms
Biochemistry
bioprocesses
dynamic optimization
Dynamical systems
Experiment design
Experiments
Mathematical programming
Nonlinear dynamics
optimal experiment design
Optimization
Parameter estimation
Quadratic programming
Semidefinite programming
Uncertainty
title Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20experiment%20design%20for%20nonlinear%20dynamic%20(bio)chemical%20systems%20using%20sequential%20semidefinite%20programming&rft.jtitle=AIChE%20journal&rft.au=Telen,%20Dries&rft.date=2014-05&rft.volume=60&rft.issue=5&rft.spage=1728&rft.epage=1739&rft.pages=1728-1739&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14389&rft_dat=%3Cproquest_cross%3E1541423935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518538912&rft_id=info:pmid/&rfr_iscdi=true