Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration

Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2014-02, Vol.60 (2), p.432-442
Hauptverfasser: Castro, Nathan J., O'Brien, Christopher M., Zhang, Lijie Grace
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 2
container_start_page 432
container_title AIChE journal
container_volume 60
creator Castro, Nathan J.
O'Brien, Christopher M.
Zhang, Lijie Grace
description Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014
doi_str_mv 10.1002/aic.14296
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730103629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3184845791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</originalsourceid><addsrcrecordid>eNqFkUtPGzEUha0KpAbKgn8wEhtYDFy_J8sQKEVKAwsqltYdj6dxmBkHe6KWf1-3aVlUQqzuQ9-50j2HkGMK5xSAXaC351SwqfpAJlQKXcopyD0yAQBa5gX9SA5SWueJ6YpNyNdLH3rfu9HbovabFabc8PKqGHAINvSbkPzoimSxbUPXFG2IRUijC3YVhiZiV0T33Q0u4ujD8Inst9gld_S3HpJvn68f5l_Kxd3N7Xy2KK3glSrbRioQlVW0VhI1NA2r0DG0QltORW25oBJBM6ad5K6WCpsKESQ2dVWB4ofkdHd3E8Pz1qXR9D5Z13U4uLBNhmoOFLhi0_dRybNxUwEyoyf_oeuwjUN-xFCR3co3qcjU2Y6yMaQUXWs20fcYXwwF8zsDkzMwfzLI7MWO_eE79_I2aGa383-Kcqfw2eSfrwqMT0ZprqV5XN6YJfAFvQdqFvwXKsSViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1478230114</pqid></control><display><type>article</type><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><source>Wiley Online Library All Journals</source><creator>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</creator><creatorcontrib>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</creatorcontrib><description>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14296</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Biocompatibility ; Biomedical materials ; biomimetic ; Biomimetics ; Biopolymers ; Bones ; Cartilage ; Cellular biology ; core-shell nanosphere ; Differentiation ; growth factor ; Nanocomposites ; Nanostructure ; osteochondral ; Regeneration ; scaffold ; Scaffolds ; Tissue engineering</subject><ispartof>AIChE journal, 2014-02, Vol.60 (2), p.432-442</ispartof><rights>2013 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</citedby><cites>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Castro, Nathan J.</creatorcontrib><creatorcontrib>O'Brien, Christopher M.</creatorcontrib><creatorcontrib>Zhang, Lijie Grace</creatorcontrib><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>biomimetic</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cellular biology</subject><subject>core-shell nanosphere</subject><subject>Differentiation</subject><subject>growth factor</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>osteochondral</subject><subject>Regeneration</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEUha0KpAbKgn8wEhtYDFy_J8sQKEVKAwsqltYdj6dxmBkHe6KWf1-3aVlUQqzuQ9-50j2HkGMK5xSAXaC351SwqfpAJlQKXcopyD0yAQBa5gX9SA5SWueJ6YpNyNdLH3rfu9HbovabFabc8PKqGHAINvSbkPzoimSxbUPXFG2IRUijC3YVhiZiV0T33Q0u4ujD8Inst9gld_S3HpJvn68f5l_Kxd3N7Xy2KK3glSrbRioQlVW0VhI1NA2r0DG0QltORW25oBJBM6ad5K6WCpsKESQ2dVWB4ofkdHd3E8Pz1qXR9D5Z13U4uLBNhmoOFLhi0_dRybNxUwEyoyf_oeuwjUN-xFCR3co3qcjU2Y6yMaQUXWs20fcYXwwF8zsDkzMwfzLI7MWO_eE79_I2aGa383-Kcqfw2eSfrwqMT0ZprqV5XN6YJfAFvQdqFvwXKsSViQ</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Castro, Nathan J.</creator><creator>O'Brien, Christopher M.</creator><creator>Zhang, Lijie Grace</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201402</creationdate><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><author>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>biomimetic</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cellular biology</topic><topic>core-shell nanosphere</topic><topic>Differentiation</topic><topic>growth factor</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>osteochondral</topic><topic>Regeneration</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Nathan J.</creatorcontrib><creatorcontrib>O'Brien, Christopher M.</creatorcontrib><creatorcontrib>Zhang, Lijie Grace</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Nathan J.</au><au>O'Brien, Christopher M.</au><au>Zhang, Lijie Grace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-02</date><risdate>2014</risdate><volume>60</volume><issue>2</issue><spage>432</spage><epage>442</epage><pages>432-442</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14296</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2014-02, Vol.60 (2), p.432-442
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1730103629
source Wiley Online Library All Journals
subjects Biocompatibility
Biomedical materials
biomimetic
Biomimetics
Biopolymers
Bones
Cartilage
Cellular biology
core-shell nanosphere
Differentiation
growth factor
Nanocomposites
Nanostructure
osteochondral
Regeneration
scaffold
Scaffolds
Tissue engineering
title Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20biphasic%203-D%20nanocomposite%20scaffold%20for%20osteochondral%20regeneration&rft.jtitle=AIChE%20journal&rft.au=Castro,%20Nathan%20J.&rft.date=2014-02&rft.volume=60&rft.issue=2&rft.spage=432&rft.epage=442&rft.pages=432-442&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14296&rft_dat=%3Cproquest_cross%3E3184845791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1478230114&rft_id=info:pmid/&rfr_iscdi=true