Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration
Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2014-02, Vol.60 (2), p.432-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 2 |
container_start_page | 432 |
container_title | AIChE journal |
container_volume | 60 |
creator | Castro, Nathan J. O'Brien, Christopher M. Zhang, Lijie Grace |
description | Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014 |
doi_str_mv | 10.1002/aic.14296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730103629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3184845791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</originalsourceid><addsrcrecordid>eNqFkUtPGzEUha0KpAbKgn8wEhtYDFy_J8sQKEVKAwsqltYdj6dxmBkHe6KWf1-3aVlUQqzuQ9-50j2HkGMK5xSAXaC351SwqfpAJlQKXcopyD0yAQBa5gX9SA5SWueJ6YpNyNdLH3rfu9HbovabFabc8PKqGHAINvSbkPzoimSxbUPXFG2IRUijC3YVhiZiV0T33Q0u4ujD8Inst9gld_S3HpJvn68f5l_Kxd3N7Xy2KK3glSrbRioQlVW0VhI1NA2r0DG0QltORW25oBJBM6ad5K6WCpsKESQ2dVWB4ofkdHd3E8Pz1qXR9D5Z13U4uLBNhmoOFLhi0_dRybNxUwEyoyf_oeuwjUN-xFCR3co3qcjU2Y6yMaQUXWs20fcYXwwF8zsDkzMwfzLI7MWO_eE79_I2aGa383-Kcqfw2eSfrwqMT0ZprqV5XN6YJfAFvQdqFvwXKsSViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1478230114</pqid></control><display><type>article</type><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><source>Wiley Online Library All Journals</source><creator>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</creator><creatorcontrib>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</creatorcontrib><description>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14296</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Biocompatibility ; Biomedical materials ; biomimetic ; Biomimetics ; Biopolymers ; Bones ; Cartilage ; Cellular biology ; core-shell nanosphere ; Differentiation ; growth factor ; Nanocomposites ; Nanostructure ; osteochondral ; Regeneration ; scaffold ; Scaffolds ; Tissue engineering</subject><ispartof>AIChE journal, 2014-02, Vol.60 (2), p.432-442</ispartof><rights>2013 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</citedby><cites>FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Castro, Nathan J.</creatorcontrib><creatorcontrib>O'Brien, Christopher M.</creatorcontrib><creatorcontrib>Zhang, Lijie Grace</creatorcontrib><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>biomimetic</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cellular biology</subject><subject>core-shell nanosphere</subject><subject>Differentiation</subject><subject>growth factor</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>osteochondral</subject><subject>Regeneration</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEUha0KpAbKgn8wEhtYDFy_J8sQKEVKAwsqltYdj6dxmBkHe6KWf1-3aVlUQqzuQ9-50j2HkGMK5xSAXaC351SwqfpAJlQKXcopyD0yAQBa5gX9SA5SWueJ6YpNyNdLH3rfu9HbovabFabc8PKqGHAINvSbkPzoimSxbUPXFG2IRUijC3YVhiZiV0T33Q0u4ujD8Inst9gld_S3HpJvn68f5l_Kxd3N7Xy2KK3glSrbRioQlVW0VhI1NA2r0DG0QltORW25oBJBM6ad5K6WCpsKESQ2dVWB4ofkdHd3E8Pz1qXR9D5Z13U4uLBNhmoOFLhi0_dRybNxUwEyoyf_oeuwjUN-xFCR3co3qcjU2Y6yMaQUXWs20fcYXwwF8zsDkzMwfzLI7MWO_eE79_I2aGa383-Kcqfw2eSfrwqMT0ZprqV5XN6YJfAFvQdqFvwXKsSViQ</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Castro, Nathan J.</creator><creator>O'Brien, Christopher M.</creator><creator>Zhang, Lijie Grace</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201402</creationdate><title>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</title><author>Castro, Nathan J. ; O'Brien, Christopher M. ; Zhang, Lijie Grace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-fd56048c61b65a70dd28ae2ac47c314bc3415a07227e53eb56ad8aa05adb88063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>biomimetic</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cellular biology</topic><topic>core-shell nanosphere</topic><topic>Differentiation</topic><topic>growth factor</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>osteochondral</topic><topic>Regeneration</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Nathan J.</creatorcontrib><creatorcontrib>O'Brien, Christopher M.</creatorcontrib><creatorcontrib>Zhang, Lijie Grace</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Nathan J.</au><au>O'Brien, Christopher M.</au><au>Zhang, Lijie Grace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-02</date><risdate>2014</risdate><volume>60</volume><issue>2</issue><spage>432</spage><epage>442</epage><pages>432-442</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Scaffold‐based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue‐specific growth factor‐encapsulated core–shell nanospheres. Specifically, a poly(caprolactone) (PCL)‐based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies. © 2013 American Institute of Chemical Engineers AIChE J 60: 432–442, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14296</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2014-02, Vol.60 (2), p.432-442 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730103629 |
source | Wiley Online Library All Journals |
subjects | Biocompatibility Biomedical materials biomimetic Biomimetics Biopolymers Bones Cartilage Cellular biology core-shell nanosphere Differentiation growth factor Nanocomposites Nanostructure osteochondral Regeneration scaffold Scaffolds Tissue engineering |
title | Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20biphasic%203-D%20nanocomposite%20scaffold%20for%20osteochondral%20regeneration&rft.jtitle=AIChE%20journal&rft.au=Castro,%20Nathan%20J.&rft.date=2014-02&rft.volume=60&rft.issue=2&rft.spage=432&rft.epage=442&rft.pages=432-442&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14296&rft_dat=%3Cproquest_cross%3E3184845791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1478230114&rft_id=info:pmid/&rfr_iscdi=true |