CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency

[Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2011-07, Vol.89 (7), p.968-977
Hauptverfasser: Noroozi, S., Hashemabadi, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 977
container_issue 7
container_start_page 968
container_title Chemical engineering research & design
container_volume 89
creator Noroozi, S.
Hashemabadi, S.H.
description [Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape. In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.
doi_str_mv 10.1016/j.cherd.2010.11.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730101805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876210003588</els_id><sourcerecordid>1010874616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</originalsourceid><addsrcrecordid>eNqFkLlOxDAQhlOAxPkENG6QaLJ44sTxFhRoOSUkGhCl5WPMeuWNwV6Q8vZ4D1FCNdLo--f4quoM6AQo8MvFxMwx2UlD1x2YUOj3qkPacFaLnjcH1VHOC0pLuxWH1dvs7oaoQYUx-0yiI34IuCJmrpYaE9HRjuQjRecDEnQOzapQA7FYRx_88E7mo03RjCbEYUN443Ew40m171TIeLqrx9Xr3e3L7KF-er5_nF0_1aZlfFX3oBjrO9e6qRWsAd0x4MZYaHTnjHKNoy0IoH2P2nElGm27dqq10tBZ5lp2XF1s55YjP78wr-TSZ4MhqAHjV5bQs-IBBO3-Rwso-pYDLyjboibFnBM6-ZH8UqWxQGuOy4XcWJZryxJAFp0ldb5boLJRwSU1GJ9_o035GAQThbvacljEfHtMMm-kofWpCJY2-j_3_ACrjpVh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010874616</pqid></control><display><type>article</type><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><source>Elsevier ScienceDirect Journals</source><creator>Noroozi, S. ; Hashemabadi, S.H.</creator><creatorcontrib>Noroozi, S. ; Hashemabadi, S.H.</creatorcontrib><description>[Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape. In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1016/j.cherd.2010.11.017</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Centrifugation, cyclones ; Chambers ; Chemical engineering ; Computational fluid dynamics ; Computer simulation ; De-oiling ; Design engineering ; Exact sciences and technology ; Hydrocyclone ; Hydrocyclones ; Hydrodynamics of contact apparatus ; Inlets ; Liquid-liquid and fluid-solid mechanical separations ; Mathematical models ; Separation ; Separation efficiency ; Simulation</subject><ispartof>Chemical engineering research &amp; design, 2011-07, Vol.89 (7), p.968-977</ispartof><rights>2010 The Institution of Chemical Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</citedby><cites>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263876210003588$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24361838$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Noroozi, S.</creatorcontrib><creatorcontrib>Hashemabadi, S.H.</creatorcontrib><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><title>Chemical engineering research &amp; design</title><description>[Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape. In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</description><subject>Applied sciences</subject><subject>Centrifugation, cyclones</subject><subject>Chambers</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>De-oiling</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrocyclone</subject><subject>Hydrocyclones</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Inlets</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Mathematical models</subject><subject>Separation</subject><subject>Separation efficiency</subject><subject>Simulation</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkLlOxDAQhlOAxPkENG6QaLJ44sTxFhRoOSUkGhCl5WPMeuWNwV6Q8vZ4D1FCNdLo--f4quoM6AQo8MvFxMwx2UlD1x2YUOj3qkPacFaLnjcH1VHOC0pLuxWH1dvs7oaoQYUx-0yiI34IuCJmrpYaE9HRjuQjRecDEnQOzapQA7FYRx_88E7mo03RjCbEYUN443Ew40m171TIeLqrx9Xr3e3L7KF-er5_nF0_1aZlfFX3oBjrO9e6qRWsAd0x4MZYaHTnjHKNoy0IoH2P2nElGm27dqq10tBZ5lp2XF1s55YjP78wr-TSZ4MhqAHjV5bQs-IBBO3-Rwso-pYDLyjboibFnBM6-ZH8UqWxQGuOy4XcWJZryxJAFp0ldb5boLJRwSU1GJ9_o035GAQThbvacljEfHtMMm-kofWpCJY2-j_3_ACrjpVh</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Noroozi, S.</creator><creator>Hashemabadi, S.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20110701</creationdate><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><author>Noroozi, S. ; Hashemabadi, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Centrifugation, cyclones</topic><topic>Chambers</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>De-oiling</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrocyclone</topic><topic>Hydrocyclones</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Inlets</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Mathematical models</topic><topic>Separation</topic><topic>Separation efficiency</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noroozi, S.</creatorcontrib><creatorcontrib>Hashemabadi, S.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noroozi, S.</au><au>Hashemabadi, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>89</volume><issue>7</issue><spage>968</spage><epage>977</epage><pages>968-977</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>[Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape. In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2010.11.017</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2011-07, Vol.89 (7), p.968-977
issn 0263-8762
language eng
recordid cdi_proquest_miscellaneous_1730101805
source Elsevier ScienceDirect Journals
subjects Applied sciences
Centrifugation, cyclones
Chambers
Chemical engineering
Computational fluid dynamics
Computer simulation
De-oiling
Design engineering
Exact sciences and technology
Hydrocyclone
Hydrocyclones
Hydrodynamics of contact apparatus
Inlets
Liquid-liquid and fluid-solid mechanical separations
Mathematical models
Separation
Separation efficiency
Simulation
title CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20analysis%20of%20inlet%20chamber%20body%20profile%20effects%20on%20de-oiling%20hydrocyclone%20efficiency&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Noroozi,%20S.&rft.date=2011-07-01&rft.volume=89&rft.issue=7&rft.spage=968&rft.epage=977&rft.pages=968-977&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1016/j.cherd.2010.11.017&rft_dat=%3Cproquest_cross%3E1010874616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010874616&rft_id=info:pmid/&rft_els_id=S0263876210003588&rfr_iscdi=true