CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency
[Display omitted] ▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2011-07, Vol.89 (7), p.968-977 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 7 |
container_start_page | 968 |
container_title | Chemical engineering research & design |
container_volume | 89 |
creator | Noroozi, S. Hashemabadi, S.H. |
description | [Display omitted]
▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape.
In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency. |
doi_str_mv | 10.1016/j.cherd.2010.11.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730101805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876210003588</els_id><sourcerecordid>1010874616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</originalsourceid><addsrcrecordid>eNqFkLlOxDAQhlOAxPkENG6QaLJ44sTxFhRoOSUkGhCl5WPMeuWNwV6Q8vZ4D1FCNdLo--f4quoM6AQo8MvFxMwx2UlD1x2YUOj3qkPacFaLnjcH1VHOC0pLuxWH1dvs7oaoQYUx-0yiI34IuCJmrpYaE9HRjuQjRecDEnQOzapQA7FYRx_88E7mo03RjCbEYUN443Ew40m171TIeLqrx9Xr3e3L7KF-er5_nF0_1aZlfFX3oBjrO9e6qRWsAd0x4MZYaHTnjHKNoy0IoH2P2nElGm27dqq10tBZ5lp2XF1s55YjP78wr-TSZ4MhqAHjV5bQs-IBBO3-Rwso-pYDLyjboibFnBM6-ZH8UqWxQGuOy4XcWJZryxJAFp0ldb5boLJRwSU1GJ9_o035GAQThbvacljEfHtMMm-kofWpCJY2-j_3_ACrjpVh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010874616</pqid></control><display><type>article</type><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><source>Elsevier ScienceDirect Journals</source><creator>Noroozi, S. ; Hashemabadi, S.H.</creator><creatorcontrib>Noroozi, S. ; Hashemabadi, S.H.</creatorcontrib><description>[Display omitted]
▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape.
In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1016/j.cherd.2010.11.017</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Centrifugation, cyclones ; Chambers ; Chemical engineering ; Computational fluid dynamics ; Computer simulation ; De-oiling ; Design engineering ; Exact sciences and technology ; Hydrocyclone ; Hydrocyclones ; Hydrodynamics of contact apparatus ; Inlets ; Liquid-liquid and fluid-solid mechanical separations ; Mathematical models ; Separation ; Separation efficiency ; Simulation</subject><ispartof>Chemical engineering research & design, 2011-07, Vol.89 (7), p.968-977</ispartof><rights>2010 The Institution of Chemical Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</citedby><cites>FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263876210003588$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24361838$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Noroozi, S.</creatorcontrib><creatorcontrib>Hashemabadi, S.H.</creatorcontrib><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><title>Chemical engineering research & design</title><description>[Display omitted]
▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape.
In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</description><subject>Applied sciences</subject><subject>Centrifugation, cyclones</subject><subject>Chambers</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>De-oiling</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrocyclone</subject><subject>Hydrocyclones</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Inlets</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Mathematical models</subject><subject>Separation</subject><subject>Separation efficiency</subject><subject>Simulation</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkLlOxDAQhlOAxPkENG6QaLJ44sTxFhRoOSUkGhCl5WPMeuWNwV6Q8vZ4D1FCNdLo--f4quoM6AQo8MvFxMwx2UlD1x2YUOj3qkPacFaLnjcH1VHOC0pLuxWH1dvs7oaoQYUx-0yiI34IuCJmrpYaE9HRjuQjRecDEnQOzapQA7FYRx_88E7mo03RjCbEYUN443Ew40m171TIeLqrx9Xr3e3L7KF-er5_nF0_1aZlfFX3oBjrO9e6qRWsAd0x4MZYaHTnjHKNoy0IoH2P2nElGm27dqq10tBZ5lp2XF1s55YjP78wr-TSZ4MhqAHjV5bQs-IBBO3-Rwso-pYDLyjboibFnBM6-ZH8UqWxQGuOy4XcWJZryxJAFp0ldb5boLJRwSU1GJ9_o035GAQThbvacljEfHtMMm-kofWpCJY2-j_3_ACrjpVh</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Noroozi, S.</creator><creator>Hashemabadi, S.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20110701</creationdate><title>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</title><author>Noroozi, S. ; Hashemabadi, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-71a3375f4f9d8321b5316ccd12b5fcaf2f04181077ebf6a82bd549bbab15d3f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Centrifugation, cyclones</topic><topic>Chambers</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>De-oiling</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrocyclone</topic><topic>Hydrocyclones</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Inlets</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Mathematical models</topic><topic>Separation</topic><topic>Separation efficiency</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noroozi, S.</creatorcontrib><creatorcontrib>Hashemabadi, S.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noroozi, S.</au><au>Hashemabadi, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency</atitle><jtitle>Chemical engineering research & design</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>89</volume><issue>7</issue><spage>968</spage><epage>977</epage><pages>968-977</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>[Display omitted]
▶ CFD analysis of inlet chamber designs effects on de-oiling hydrocyclone efficiency. ▶ Evaluation of standard, exponential, conical, quadratic polynomial inlet chamber designs. ▶ Analysis of Energy dissipation rate, eddy recirculation, axial and tangential velocity profiles. ▶ The separation efficiency is improved approximately 8% using exponential body shape.
In this study the effect of inlet chamber design on de-oiling hydrocyclone efficiency has been investigated numerically with the aim of minimizing the energy loss. To this aim, effects of four different inlet chamber designs (exponential, conical, quadratic polynomial body profile and standard design) on efficiency have been considered. Algebraic slip mixture model and Reynolds Stress Model (RSM) have been employed for prediction of multiphase flow behavior and simulation of turbulent flow through the cyclone respectively. The simulation results for efficiency of standard design demonstrate a proper agreement with reported experimental data. The results show that the separation efficiency can be improved approximately 8% using exponential body shape. The recirculation eddies that exists in the upper section prevents inward radial flow, consequently the efficiency reduces; the simulations illustrate that inlet chamber shape affects on the size of these eddies. More recirculation in hydrocyclone inlet chamber with quadratic polynomial body profile causes minimum separation efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2010.11.017</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2011-07, Vol.89 (7), p.968-977 |
issn | 0263-8762 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730101805 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Centrifugation, cyclones Chambers Chemical engineering Computational fluid dynamics Computer simulation De-oiling Design engineering Exact sciences and technology Hydrocyclone Hydrocyclones Hydrodynamics of contact apparatus Inlets Liquid-liquid and fluid-solid mechanical separations Mathematical models Separation Separation efficiency Simulation |
title | CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20analysis%20of%20inlet%20chamber%20body%20profile%20effects%20on%20de-oiling%20hydrocyclone%20efficiency&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Noroozi,%20S.&rft.date=2011-07-01&rft.volume=89&rft.issue=7&rft.spage=968&rft.epage=977&rft.pages=968-977&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1016/j.cherd.2010.11.017&rft_dat=%3Cproquest_cross%3E1010874616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010874616&rft_id=info:pmid/&rft_els_id=S0263876210003588&rfr_iscdi=true |