Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries
Graphene and graphene/metal oxide composite materials have attracted considerable interest for use as energy materials due to their excellent electrochemical performances. Here, we propose using melamine as a template for the synthesis of cambered nano-walls of SnO sub(2)/rGO materials. Melamine pow...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-08, Vol.3 (34), p.17635-17643 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17643 |
---|---|
container_issue | 34 |
container_start_page | 17635 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 3 |
creator | Shen, Rixing Hong, Yanzhong Stankovich, Joseph J Wang, Zhiyong Dai, Sheng Jin, Xianbo |
description | Graphene and graphene/metal oxide composite materials have attracted considerable interest for use as energy materials due to their excellent electrochemical performances. Here, we propose using melamine as a template for the synthesis of cambered nano-walls of SnO sub(2)/rGO materials. Melamine powder can effectively absorb SnO sub(2)/GO from the solution to form a core-shell structure of melamine[at]SnO sub(2)/GO. After thermal reduction of GO at 200 degree C to form the melamine[at]SnO sub(2)/rGO, melamine was dissolved in hot water at 80 degree C, leaving behind the cambered SnO sub(2)/rGO nano-walls. Melamine is recyclable since it precipitates when its solution cools to room temperature. The thickness of the SnO sub(2)/rGO nano-walls can be easily controlled by adjusting the mass ratio of melamine to SnO sub(2)/GO. When the mass ratio was set to ten, cambered walls of SnO sub(2)/rGO with a thickness of about 100-200 nm were achieved. The resulting SnO sub(2)/rGO delivered an initial reversible capacity of 998 mA h g super(-1) at a current density of 100 mA g super(-1) and a capacity of 855 mA h g super(-1) after 100 discharge-charge cycles in a potential range between 0.02 and 3.0 V vs.Li/Li super(+). It also showed good rate performance with a reversible capacity of 460 mA h g super(-1) at 1 A g super(-1). These high capacities can be linked to the special cambered nano-walls which ensure fast solid diffusion in addition to providing an effective liquid-channel and buffer-volume in the electrode. The proposed synthesis method is easily scalable and should be applicable to many other graphene based energy materials. |
doi_str_mv | 10.1039/c5ta03166d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730100525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730100525</sourcerecordid><originalsourceid>FETCH-LOGICAL-p665-a45e6fa155f06c0b212a132cd514bd8d378068cca43bddb920c15bb26cf397743</originalsourceid><addsrcrecordid>eNqNjMFKAzEURYMoWGo3fkGWdTH2JZlkZpZStAqFLtp9STJvbCST1EkGKfjxFhXX3s29HA6XkFsG9wxEs7AyaxBMqfaCTDhIKKqyUZd_u66vySylNzinBlBNMyGf21PIB0wu0dhRq3uDA7Y06BCLD-39N96GDU2jmfO7xbDaUBv7Y0wuY6JjcuGVajqgPVmvjUfao9e9C0gz9kevM9IuDtS7fHBjX7gYqNE54-Aw3ZCrTvuEs9-ekt3T4275XKw3q5flw7o4KiULXUpUnWZSdqAsGM64ZoLbVrLStHUrqhpUba0uhWlb03CwTBrDle1EU1WlmJL5z-1xiO8jprzvXbLovQ4Yx7RnlQAGILn8h8oqCdCc1S81wHBm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717500925</pqid></control><display><type>article</type><title>Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Rixing ; Hong, Yanzhong ; Stankovich, Joseph J ; Wang, Zhiyong ; Dai, Sheng ; Jin, Xianbo</creator><creatorcontrib>Shen, Rixing ; Hong, Yanzhong ; Stankovich, Joseph J ; Wang, Zhiyong ; Dai, Sheng ; Jin, Xianbo</creatorcontrib><description>Graphene and graphene/metal oxide composite materials have attracted considerable interest for use as energy materials due to their excellent electrochemical performances. Here, we propose using melamine as a template for the synthesis of cambered nano-walls of SnO sub(2)/rGO materials. Melamine powder can effectively absorb SnO sub(2)/GO from the solution to form a core-shell structure of melamine[at]SnO sub(2)/GO. After thermal reduction of GO at 200 degree C to form the melamine[at]SnO sub(2)/rGO, melamine was dissolved in hot water at 80 degree C, leaving behind the cambered SnO sub(2)/rGO nano-walls. Melamine is recyclable since it precipitates when its solution cools to room temperature. The thickness of the SnO sub(2)/rGO nano-walls can be easily controlled by adjusting the mass ratio of melamine to SnO sub(2)/GO. When the mass ratio was set to ten, cambered walls of SnO sub(2)/rGO with a thickness of about 100-200 nm were achieved. The resulting SnO sub(2)/rGO delivered an initial reversible capacity of 998 mA h g super(-1) at a current density of 100 mA g super(-1) and a capacity of 855 mA h g super(-1) after 100 discharge-charge cycles in a potential range between 0.02 and 3.0 V vs.Li/Li super(+). It also showed good rate performance with a reversible capacity of 460 mA h g super(-1) at 1 A g super(-1). These high capacities can be linked to the special cambered nano-walls which ensure fast solid diffusion in addition to providing an effective liquid-channel and buffer-volume in the electrode. The proposed synthesis method is easily scalable and should be applicable to many other graphene based energy materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c5ta03166d</identifier><language>eng</language><subject>Cambering ; Graphene ; Lithium-ion batteries ; Mass ratios ; Melamine ; Nanostructure ; Synthesis ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-08, Vol.3 (34), p.17635-17643</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Shen, Rixing</creatorcontrib><creatorcontrib>Hong, Yanzhong</creatorcontrib><creatorcontrib>Stankovich, Joseph J</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jin, Xianbo</creatorcontrib><title>Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Graphene and graphene/metal oxide composite materials have attracted considerable interest for use as energy materials due to their excellent electrochemical performances. Here, we propose using melamine as a template for the synthesis of cambered nano-walls of SnO sub(2)/rGO materials. Melamine powder can effectively absorb SnO sub(2)/GO from the solution to form a core-shell structure of melamine[at]SnO sub(2)/GO. After thermal reduction of GO at 200 degree C to form the melamine[at]SnO sub(2)/rGO, melamine was dissolved in hot water at 80 degree C, leaving behind the cambered SnO sub(2)/rGO nano-walls. Melamine is recyclable since it precipitates when its solution cools to room temperature. The thickness of the SnO sub(2)/rGO nano-walls can be easily controlled by adjusting the mass ratio of melamine to SnO sub(2)/GO. When the mass ratio was set to ten, cambered walls of SnO sub(2)/rGO with a thickness of about 100-200 nm were achieved. The resulting SnO sub(2)/rGO delivered an initial reversible capacity of 998 mA h g super(-1) at a current density of 100 mA g super(-1) and a capacity of 855 mA h g super(-1) after 100 discharge-charge cycles in a potential range between 0.02 and 3.0 V vs.Li/Li super(+). It also showed good rate performance with a reversible capacity of 460 mA h g super(-1) at 1 A g super(-1). These high capacities can be linked to the special cambered nano-walls which ensure fast solid diffusion in addition to providing an effective liquid-channel and buffer-volume in the electrode. The proposed synthesis method is easily scalable and should be applicable to many other graphene based energy materials.</description><subject>Cambering</subject><subject>Graphene</subject><subject>Lithium-ion batteries</subject><subject>Mass ratios</subject><subject>Melamine</subject><subject>Nanostructure</subject><subject>Synthesis</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjMFKAzEURYMoWGo3fkGWdTH2JZlkZpZStAqFLtp9STJvbCST1EkGKfjxFhXX3s29HA6XkFsG9wxEs7AyaxBMqfaCTDhIKKqyUZd_u66vySylNzinBlBNMyGf21PIB0wu0dhRq3uDA7Y06BCLD-39N96GDU2jmfO7xbDaUBv7Y0wuY6JjcuGVajqgPVmvjUfao9e9C0gz9kevM9IuDtS7fHBjX7gYqNE54-Aw3ZCrTvuEs9-ekt3T4275XKw3q5flw7o4KiULXUpUnWZSdqAsGM64ZoLbVrLStHUrqhpUba0uhWlb03CwTBrDle1EU1WlmJL5z-1xiO8jprzvXbLovQ4Yx7RnlQAGILn8h8oqCdCc1S81wHBm</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Shen, Rixing</creator><creator>Hong, Yanzhong</creator><creator>Stankovich, Joseph J</creator><creator>Wang, Zhiyong</creator><creator>Dai, Sheng</creator><creator>Jin, Xianbo</creator><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries</title><author>Shen, Rixing ; Hong, Yanzhong ; Stankovich, Joseph J ; Wang, Zhiyong ; Dai, Sheng ; Jin, Xianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p665-a45e6fa155f06c0b212a132cd514bd8d378068cca43bddb920c15bb26cf397743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cambering</topic><topic>Graphene</topic><topic>Lithium-ion batteries</topic><topic>Mass ratios</topic><topic>Melamine</topic><topic>Nanostructure</topic><topic>Synthesis</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Rixing</creatorcontrib><creatorcontrib>Hong, Yanzhong</creatorcontrib><creatorcontrib>Stankovich, Joseph J</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jin, Xianbo</creatorcontrib><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Rixing</au><au>Hong, Yanzhong</au><au>Stankovich, Joseph J</au><au>Wang, Zhiyong</au><au>Dai, Sheng</au><au>Jin, Xianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>3</volume><issue>34</issue><spage>17635</spage><epage>17643</epage><pages>17635-17643</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Graphene and graphene/metal oxide composite materials have attracted considerable interest for use as energy materials due to their excellent electrochemical performances. Here, we propose using melamine as a template for the synthesis of cambered nano-walls of SnO sub(2)/rGO materials. Melamine powder can effectively absorb SnO sub(2)/GO from the solution to form a core-shell structure of melamine[at]SnO sub(2)/GO. After thermal reduction of GO at 200 degree C to form the melamine[at]SnO sub(2)/rGO, melamine was dissolved in hot water at 80 degree C, leaving behind the cambered SnO sub(2)/rGO nano-walls. Melamine is recyclable since it precipitates when its solution cools to room temperature. The thickness of the SnO sub(2)/rGO nano-walls can be easily controlled by adjusting the mass ratio of melamine to SnO sub(2)/GO. When the mass ratio was set to ten, cambered walls of SnO sub(2)/rGO with a thickness of about 100-200 nm were achieved. The resulting SnO sub(2)/rGO delivered an initial reversible capacity of 998 mA h g super(-1) at a current density of 100 mA g super(-1) and a capacity of 855 mA h g super(-1) after 100 discharge-charge cycles in a potential range between 0.02 and 3.0 V vs.Li/Li super(+). It also showed good rate performance with a reversible capacity of 460 mA h g super(-1) at 1 A g super(-1). These high capacities can be linked to the special cambered nano-walls which ensure fast solid diffusion in addition to providing an effective liquid-channel and buffer-volume in the electrode. The proposed synthesis method is easily scalable and should be applicable to many other graphene based energy materials.</abstract><doi>10.1039/c5ta03166d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2015-08, Vol.3 (34), p.17635-17643 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730100525 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cambering Graphene Lithium-ion batteries Mass ratios Melamine Nanostructure Synthesis Tin dioxide Tin oxides |
title | Synthesis of cambered nano-walls of SnO sub(2)/rGO composites using a recyclable melamine template for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20cambered%20nano-walls%20of%20SnO%20sub(2)/rGO%20composites%20using%20a%20recyclable%20melamine%20template%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shen,%20Rixing&rft.date=2015-08-01&rft.volume=3&rft.issue=34&rft.spage=17635&rft.epage=17643&rft.pages=17635-17643&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c5ta03166d&rft_dat=%3Cproquest%3E1730100525%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717500925&rft_id=info:pmid/&rfr_iscdi=true |