Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor

The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO sub(2)) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2012-11, Vol.63, p.38-43
Hauptverfasser: Halimi, Burhanuddin, Suh, Kune Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 38
container_title Energy conversion and management
container_volume 63
creator Halimi, Burhanuddin
Suh, Kune Y
description The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO sub(2)) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO sub(2) is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730098928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730098928</sourcerecordid><originalsourceid>FETCH-LOGICAL-p668-9d68c024d912bb4565ad805cee5ec7ec02967936b9fe36831129d1d01c49ef523</originalsourceid><addsrcrecordid>eNqFjM1KxDAYRbNQcBx9hyzHRSH_TZZa_IOB2cx-SNMv0KHT1Hyp0re3qHs398I9l3NFNow7U1nH1A25RTwzxqRmZkPOTbpMc_GlT6MfqF9jwR5pihTnCXLIfenDSprDOrQ78UCfsl9KGmlYwgB0Sl-QaUjjJ2RcJRQXLHChMWUa558lgw8l5TtyHf2AcP_XW3J8eT42b9X-8PrePO6ryRhbuc7YwITqHBdtq7TRvrNMBwANoYYVOVM7aVoXQRorOReu4x3jQTmIWsgt2f1qp5w-ZsByuvQYYBj8CGnGE68lY846Yf-_SuVULY0R8hsTpGN2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349473662</pqid></control><display><type>article</type><title>Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Halimi, Burhanuddin ; Suh, Kune Y</creator><creatorcontrib>Halimi, Burhanuddin ; Suh, Kune Y</creatorcontrib><description>The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO sub(2)) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO sub(2) is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.</description><identifier>ISSN: 0196-8904</identifier><language>eng</language><subject>Brayton cycle ; Carbon dioxide ; Energy conversion ; Fusion reactors ; Heating ; High density ; Lithium ; Modular</subject><ispartof>Energy conversion and management, 2012-11, Vol.63, p.38-43</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Halimi, Burhanuddin</creatorcontrib><creatorcontrib>Suh, Kune Y</creatorcontrib><title>Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor</title><title>Energy conversion and management</title><description>The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO sub(2)) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO sub(2) is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.</description><subject>Brayton cycle</subject><subject>Carbon dioxide</subject><subject>Energy conversion</subject><subject>Fusion reactors</subject><subject>Heating</subject><subject>High density</subject><subject>Lithium</subject><subject>Modular</subject><issn>0196-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjM1KxDAYRbNQcBx9hyzHRSH_TZZa_IOB2cx-SNMv0KHT1Hyp0re3qHs398I9l3NFNow7U1nH1A25RTwzxqRmZkPOTbpMc_GlT6MfqF9jwR5pihTnCXLIfenDSprDOrQ78UCfsl9KGmlYwgB0Sl-QaUjjJ2RcJRQXLHChMWUa558lgw8l5TtyHf2AcP_XW3J8eT42b9X-8PrePO6ryRhbuc7YwITqHBdtq7TRvrNMBwANoYYVOVM7aVoXQRorOReu4x3jQTmIWsgt2f1qp5w-ZsByuvQYYBj8CGnGE68lY846Yf-_SuVULY0R8hsTpGN2</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Halimi, Burhanuddin</creator><creator>Suh, Kune Y</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor</title><author>Halimi, Burhanuddin ; Suh, Kune Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p668-9d68c024d912bb4565ad805cee5ec7ec02967936b9fe36831129d1d01c49ef523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brayton cycle</topic><topic>Carbon dioxide</topic><topic>Energy conversion</topic><topic>Fusion reactors</topic><topic>Heating</topic><topic>High density</topic><topic>Lithium</topic><topic>Modular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halimi, Burhanuddin</creatorcontrib><creatorcontrib>Suh, Kune Y</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halimi, Burhanuddin</au><au>Suh, Kune Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor</atitle><jtitle>Energy conversion and management</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>63</volume><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0196-8904</issn><abstract>The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO sub(2)) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO sub(2) is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.</abstract><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2012-11, Vol.63, p.38-43
issn 0196-8904
language eng
recordid cdi_proquest_miscellaneous_1730098928
source ScienceDirect Journals (5 years ago - present)
subjects Brayton cycle
Carbon dioxide
Energy conversion
Fusion reactors
Heating
High density
Lithium
Modular
title Computational analysis of supercritical CO sub(2) Brayton cycle power conversion system for fusion reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20supercritical%20CO%20sub(2)%20Brayton%20cycle%20power%20conversion%20system%20for%20fusion%20reactor&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Halimi,%20Burhanuddin&rft.date=2012-11-01&rft.volume=63&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0196-8904&rft_id=info:doi/&rft_dat=%3Cproquest%3E1730098928%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349473662&rft_id=info:pmid/&rfr_iscdi=true