Boron nitride zigzag nanoribbons: optimal thermoelectric systems

Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-09, Vol.17 (34), p.22448-22454
Hauptverfasser: Zberecki, K, Swirkowicz, R, Barna, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22454
container_issue 34
container_start_page 22448
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Zberecki, K
Swirkowicz, R
Barna, J
description Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications. Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.
doi_str_mv 10.1039/c5cp03570h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730096142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730096142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</originalsourceid><addsrcrecordid>eNqN0cFLwzAUBvAgipvTi3el3kSYviRN0npSizphoAc9lzR93SptU5PusP31VjfnTTy9wPfjwftCyDGFSwo8vjLCtMCFgvkOGdJQ8nEMUbi7fSs5IAfevwMAFZTvkwGTTICgbEhu7qyzTdCUnStzDFblbKVnQaMb68oss42_DmzblbWugm6OrrZYoemtCfzSd1j7Q7JX6Mrj0WaOyNvD_WsyGU-fH5-S2-nYhBB3Y4SwoAoQQBplGA_DIi4iLFAaSZVRVOSRVjEXWlLMMyYNMh3mBdOGi4gLPiLn672tsx8L9F1al95gVekG7cKnVHGAWNKQ_YOCUCySSvb0Yk2Ns947LNLW9ce6ZUoh_So3TUTy8l3upMenm72LrMZ8S3_a7MHJGjhvtunv7_T52V952uYF_wSQJYmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705728676</pqid></control><display><type>article</type><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zberecki, K ; Swirkowicz, R ; Barna, J</creator><creatorcontrib>Zberecki, K ; Swirkowicz, R ; Barna, J</creatorcontrib><description>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications. Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp03570h</identifier><identifier>PMID: 26250512</identifier><language>eng</language><publisher>England</publisher><subject>Boron nitride ; Channels ; Density functional theory ; Fermi surfaces ; Nanostructure ; Optimization ; Physical chemistry ; Thermoelectricity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-09, Vol.17 (34), p.22448-22454</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</citedby><cites>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26250512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zberecki, K</creatorcontrib><creatorcontrib>Swirkowicz, R</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications. Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</description><subject>Boron nitride</subject><subject>Channels</subject><subject>Density functional theory</subject><subject>Fermi surfaces</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Thermoelectricity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0cFLwzAUBvAgipvTi3el3kSYviRN0npSizphoAc9lzR93SptU5PusP31VjfnTTy9wPfjwftCyDGFSwo8vjLCtMCFgvkOGdJQ8nEMUbi7fSs5IAfevwMAFZTvkwGTTICgbEhu7qyzTdCUnStzDFblbKVnQaMb68oss42_DmzblbWugm6OrrZYoemtCfzSd1j7Q7JX6Mrj0WaOyNvD_WsyGU-fH5-S2-nYhBB3Y4SwoAoQQBplGA_DIi4iLFAaSZVRVOSRVjEXWlLMMyYNMh3mBdOGi4gLPiLn672tsx8L9F1al95gVekG7cKnVHGAWNKQ_YOCUCySSvb0Yk2Ns947LNLW9ce6ZUoh_So3TUTy8l3upMenm72LrMZ8S3_a7MHJGjhvtunv7_T52V952uYF_wSQJYmN</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Zberecki, K</creator><creator>Swirkowicz, R</creator><creator>Barna, J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150914</creationdate><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><author>Zberecki, K ; Swirkowicz, R ; Barna, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boron nitride</topic><topic>Channels</topic><topic>Density functional theory</topic><topic>Fermi surfaces</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zberecki, K</creatorcontrib><creatorcontrib>Swirkowicz, R</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zberecki, K</au><au>Swirkowicz, R</au><au>Barna, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>17</volume><issue>34</issue><spage>22448</spage><epage>22454</epage><pages>22448-22454</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications. Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</abstract><cop>England</cop><pmid>26250512</pmid><doi>10.1039/c5cp03570h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-09, Vol.17 (34), p.22448-22454
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1730096142
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Boron nitride
Channels
Density functional theory
Fermi surfaces
Nanostructure
Optimization
Physical chemistry
Thermoelectricity
title Boron nitride zigzag nanoribbons: optimal thermoelectric systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20nitride%20zigzag%20nanoribbons:%20optimal%20thermoelectric%20systems&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zberecki,%20K&rft.date=2015-09-14&rft.volume=17&rft.issue=34&rft.spage=22448&rft.epage=22454&rft.pages=22448-22454&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp03570h&rft_dat=%3Cproquest_cross%3E1730096142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705728676&rft_id=info:pmid/26250512&rfr_iscdi=true