Boron nitride zigzag nanoribbons: optimal thermoelectric systems
Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2015-09, Vol.17 (34), p.22448-22454 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22454 |
---|---|
container_issue | 34 |
container_start_page | 22448 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Zberecki, K Swirkowicz, R Barna, J |
description | Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications.
Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. |
doi_str_mv | 10.1039/c5cp03570h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730096142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730096142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</originalsourceid><addsrcrecordid>eNqN0cFLwzAUBvAgipvTi3el3kSYviRN0npSizphoAc9lzR93SptU5PusP31VjfnTTy9wPfjwftCyDGFSwo8vjLCtMCFgvkOGdJQ8nEMUbi7fSs5IAfevwMAFZTvkwGTTICgbEhu7qyzTdCUnStzDFblbKVnQaMb68oss42_DmzblbWugm6OrrZYoemtCfzSd1j7Q7JX6Mrj0WaOyNvD_WsyGU-fH5-S2-nYhBB3Y4SwoAoQQBplGA_DIi4iLFAaSZVRVOSRVjEXWlLMMyYNMh3mBdOGi4gLPiLn672tsx8L9F1al95gVekG7cKnVHGAWNKQ_YOCUCySSvb0Yk2Ns947LNLW9ce6ZUoh_So3TUTy8l3upMenm72LrMZ8S3_a7MHJGjhvtunv7_T52V952uYF_wSQJYmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705728676</pqid></control><display><type>article</type><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zberecki, K ; Swirkowicz, R ; Barna, J</creator><creatorcontrib>Zberecki, K ; Swirkowicz, R ; Barna, J</creatorcontrib><description>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications.
Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp03570h</identifier><identifier>PMID: 26250512</identifier><language>eng</language><publisher>England</publisher><subject>Boron nitride ; Channels ; Density functional theory ; Fermi surfaces ; Nanostructure ; Optimization ; Physical chemistry ; Thermoelectricity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-09, Vol.17 (34), p.22448-22454</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</citedby><cites>FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26250512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zberecki, K</creatorcontrib><creatorcontrib>Swirkowicz, R</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications.
Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</description><subject>Boron nitride</subject><subject>Channels</subject><subject>Density functional theory</subject><subject>Fermi surfaces</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Thermoelectricity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0cFLwzAUBvAgipvTi3el3kSYviRN0npSizphoAc9lzR93SptU5PusP31VjfnTTy9wPfjwftCyDGFSwo8vjLCtMCFgvkOGdJQ8nEMUbi7fSs5IAfevwMAFZTvkwGTTICgbEhu7qyzTdCUnStzDFblbKVnQaMb68oss42_DmzblbWugm6OrrZYoemtCfzSd1j7Q7JX6Mrj0WaOyNvD_WsyGU-fH5-S2-nYhBB3Y4SwoAoQQBplGA_DIi4iLFAaSZVRVOSRVjEXWlLMMyYNMh3mBdOGi4gLPiLn672tsx8L9F1al95gVekG7cKnVHGAWNKQ_YOCUCySSvb0Yk2Ns947LNLW9ce6ZUoh_So3TUTy8l3upMenm72LrMZ8S3_a7MHJGjhvtunv7_T52V952uYF_wSQJYmN</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Zberecki, K</creator><creator>Swirkowicz, R</creator><creator>Barna, J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150914</creationdate><title>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</title><author>Zberecki, K ; Swirkowicz, R ; Barna, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e04f170e006c7c2344f9f8efe6c617c715d8a7935a61edb26ce2a4df2ac358353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boron nitride</topic><topic>Channels</topic><topic>Density functional theory</topic><topic>Fermi surfaces</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zberecki, K</creatorcontrib><creatorcontrib>Swirkowicz, R</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zberecki, K</au><au>Swirkowicz, R</au><au>Barna, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron nitride zigzag nanoribbons: optimal thermoelectric systems</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>17</volume><issue>34</issue><spage>22448</spage><epage>22454</epage><pages>22448-22454</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications.
Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.</abstract><cop>England</cop><pmid>26250512</pmid><doi>10.1039/c5cp03570h</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-09, Vol.17 (34), p.22448-22454 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730096142 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Boron nitride Channels Density functional theory Fermi surfaces Nanostructure Optimization Physical chemistry Thermoelectricity |
title | Boron nitride zigzag nanoribbons: optimal thermoelectric systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20nitride%20zigzag%20nanoribbons:%20optimal%20thermoelectric%20systems&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zberecki,%20K&rft.date=2015-09-14&rft.volume=17&rft.issue=34&rft.spage=22448&rft.epage=22454&rft.pages=22448-22454&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp03570h&rft_dat=%3Cproquest_cross%3E1730096142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705728676&rft_id=info:pmid/26250512&rfr_iscdi=true |