Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach

Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nong ye gong cheng xue bao 2015-03, Vol.31 (5), p.194-202
Hauptverfasser: Guo, Pengtao, Li, Maofen, Luo, Wei, Lin, Qinghuo, Tang, Qunfeng, Liu, Zhiwei
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 5
container_start_page 194
container_title Nong ye gong cheng xue bao
container_volume 31
creator Guo, Pengtao
Li, Maofen
Luo, Wei
Lin, Qinghuo
Tang, Qunfeng
Liu, Zhiwei
description Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme
doi_str_mv 10.3969/j.issn.1002-6819.2015.05.028
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730085316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730085316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p103t-516c6e3169a84834cab89780336951c507150a1b4e1cf8dda068207c21b92d8d3</originalsourceid><addsrcrecordid>eNo9j01PwzAMhnMAiWnsP-TAgUuL3fQjPaKJL2kSHOA8OWk6grqkJNn-Af-bDBCSZVv2q-e1GbtCKEXf9jcfpY3RlQhQFa3EvqwAmxJyVPKMLf7nF2wVo1XQoOgAalywr5dgBquT9Y77kUdvJ558ook7m4LfGcdHH3g4KGUCnydyiX7ElHgwu9xladQ0Ga4omoHnlXFHG7zbG3fiHClYUpOJnNzAQ05-f2KamDjNc_Ck3y_Z-UhTNKu_umRv93ev68di8_zwtL7dFDOCSEWDrW6NwLYnWUtRa1Ky7yQI0fYN6gY6bIBQ1Qb1KIeBoJUVdLpC1VeDHMSSXf9ys-3nIV-w3duozZTfMv4Qt9gJANlkB_ENsX5pAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730085316</pqid></control><display><type>article</type><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><source>IngentaConnect Free/Open Access Journals</source><creator>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</creator><creatorcontrib>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</creatorcontrib><description>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</description><identifier>ISSN: 1002-6819</identifier><identifier>DOI: 10.3969/j.issn.1002-6819.2015.05.028</identifier><language>chi</language><subject>Fertility ; Forests ; Mathematical models ; Plantations ; Regional ; Rubber ; Soil (material) ; Spatial distribution</subject><ispartof>Nong ye gong cheng xue bao, 2015-03, Vol.31 (5), p.194-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Pengtao</creatorcontrib><creatorcontrib>Li, Maofen</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Lin, Qinghuo</creatorcontrib><creatorcontrib>Tang, Qunfeng</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><title>Nong ye gong cheng xue bao</title><description>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</description><subject>Fertility</subject><subject>Forests</subject><subject>Mathematical models</subject><subject>Plantations</subject><subject>Regional</subject><subject>Rubber</subject><subject>Soil (material)</subject><subject>Spatial distribution</subject><issn>1002-6819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j01PwzAMhnMAiWnsP-TAgUuL3fQjPaKJL2kSHOA8OWk6grqkJNn-Af-bDBCSZVv2q-e1GbtCKEXf9jcfpY3RlQhQFa3EvqwAmxJyVPKMLf7nF2wVo1XQoOgAalywr5dgBquT9Y77kUdvJ558ook7m4LfGcdHH3g4KGUCnydyiX7ElHgwu9xladQ0Ga4omoHnlXFHG7zbG3fiHClYUpOJnNzAQ05-f2KamDjNc_Ck3y_Z-UhTNKu_umRv93ev68di8_zwtL7dFDOCSEWDrW6NwLYnWUtRa1Ky7yQI0fYN6gY6bIBQ1Qb1KIeBoJUVdLpC1VeDHMSSXf9ys-3nIV-w3duozZTfMv4Qt9gJANlkB_ENsX5pAQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Guo, Pengtao</creator><creator>Li, Maofen</creator><creator>Luo, Wei</creator><creator>Lin, Qinghuo</creator><creator>Tang, Qunfeng</creator><creator>Liu, Zhiwei</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150301</creationdate><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><author>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p103t-516c6e3169a84834cab89780336951c507150a1b4e1cf8dda068207c21b92d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2015</creationdate><topic>Fertility</topic><topic>Forests</topic><topic>Mathematical models</topic><topic>Plantations</topic><topic>Regional</topic><topic>Rubber</topic><topic>Soil (material)</topic><topic>Spatial distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Pengtao</creatorcontrib><creatorcontrib>Li, Maofen</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Lin, Qinghuo</creatorcontrib><creatorcontrib>Tang, Qunfeng</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Nong ye gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Pengtao</au><au>Li, Maofen</au><au>Luo, Wei</au><au>Lin, Qinghuo</au><au>Tang, Qunfeng</au><au>Liu, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</atitle><jtitle>Nong ye gong cheng xue bao</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>31</volume><issue>5</issue><spage>194</spage><epage>202</epage><pages>194-202</pages><issn>1002-6819</issn><abstract>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</abstract><doi>10.3969/j.issn.1002-6819.2015.05.028</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1002-6819
ispartof Nong ye gong cheng xue bao, 2015-03, Vol.31 (5), p.194-202
issn 1002-6819
language chi
recordid cdi_proquest_miscellaneous_1730085316
source IngentaConnect Free/Open Access Journals
subjects Fertility
Forests
Mathematical models
Plantations
Regional
Rubber
Soil (material)
Spatial distribution
title Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20soil%20total%20nitrogen%20for%20rubber%20plantation%20at%20regional%20scale%20based%20on%20environmental%20variables%20and%20random%20forest%20approach&rft.jtitle=Nong%20ye%20gong%20cheng%20xue%20bao&rft.au=Guo,%20Pengtao&rft.date=2015-03-01&rft.volume=31&rft.issue=5&rft.spage=194&rft.epage=202&rft.pages=194-202&rft.issn=1002-6819&rft_id=info:doi/10.3969/j.issn.1002-6819.2015.05.028&rft_dat=%3Cproquest%3E1730085316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730085316&rft_id=info:pmid/&rfr_iscdi=true