Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach
Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digi...
Gespeichert in:
Veröffentlicht in: | Nong ye gong cheng xue bao 2015-03, Vol.31 (5), p.194-202 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 5 |
container_start_page | 194 |
container_title | Nong ye gong cheng xue bao |
container_volume | 31 |
creator | Guo, Pengtao Li, Maofen Luo, Wei Lin, Qinghuo Tang, Qunfeng Liu, Zhiwei |
description | Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme |
doi_str_mv | 10.3969/j.issn.1002-6819.2015.05.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730085316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730085316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p103t-516c6e3169a84834cab89780336951c507150a1b4e1cf8dda068207c21b92d8d3</originalsourceid><addsrcrecordid>eNo9j01PwzAMhnMAiWnsP-TAgUuL3fQjPaKJL2kSHOA8OWk6grqkJNn-Af-bDBCSZVv2q-e1GbtCKEXf9jcfpY3RlQhQFa3EvqwAmxJyVPKMLf7nF2wVo1XQoOgAalywr5dgBquT9Y77kUdvJ558ook7m4LfGcdHH3g4KGUCnydyiX7ElHgwu9xladQ0Ga4omoHnlXFHG7zbG3fiHClYUpOJnNzAQ05-f2KamDjNc_Ck3y_Z-UhTNKu_umRv93ev68di8_zwtL7dFDOCSEWDrW6NwLYnWUtRa1Ky7yQI0fYN6gY6bIBQ1Qb1KIeBoJUVdLpC1VeDHMSSXf9ys-3nIV-w3duozZTfMv4Qt9gJANlkB_ENsX5pAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730085316</pqid></control><display><type>article</type><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><source>IngentaConnect Free/Open Access Journals</source><creator>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</creator><creatorcontrib>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</creatorcontrib><description>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</description><identifier>ISSN: 1002-6819</identifier><identifier>DOI: 10.3969/j.issn.1002-6819.2015.05.028</identifier><language>chi</language><subject>Fertility ; Forests ; Mathematical models ; Plantations ; Regional ; Rubber ; Soil (material) ; Spatial distribution</subject><ispartof>Nong ye gong cheng xue bao, 2015-03, Vol.31 (5), p.194-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Pengtao</creatorcontrib><creatorcontrib>Li, Maofen</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Lin, Qinghuo</creatorcontrib><creatorcontrib>Tang, Qunfeng</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><title>Nong ye gong cheng xue bao</title><description>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</description><subject>Fertility</subject><subject>Forests</subject><subject>Mathematical models</subject><subject>Plantations</subject><subject>Regional</subject><subject>Rubber</subject><subject>Soil (material)</subject><subject>Spatial distribution</subject><issn>1002-6819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j01PwzAMhnMAiWnsP-TAgUuL3fQjPaKJL2kSHOA8OWk6grqkJNn-Af-bDBCSZVv2q-e1GbtCKEXf9jcfpY3RlQhQFa3EvqwAmxJyVPKMLf7nF2wVo1XQoOgAalywr5dgBquT9Y77kUdvJ558ook7m4LfGcdHH3g4KGUCnydyiX7ElHgwu9xladQ0Ga4omoHnlXFHG7zbG3fiHClYUpOJnNzAQ05-f2KamDjNc_Ck3y_Z-UhTNKu_umRv93ev68di8_zwtL7dFDOCSEWDrW6NwLYnWUtRa1Ky7yQI0fYN6gY6bIBQ1Qb1KIeBoJUVdLpC1VeDHMSSXf9ys-3nIV-w3duozZTfMv4Qt9gJANlkB_ENsX5pAQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Guo, Pengtao</creator><creator>Li, Maofen</creator><creator>Luo, Wei</creator><creator>Lin, Qinghuo</creator><creator>Tang, Qunfeng</creator><creator>Liu, Zhiwei</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150301</creationdate><title>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</title><author>Guo, Pengtao ; Li, Maofen ; Luo, Wei ; Lin, Qinghuo ; Tang, Qunfeng ; Liu, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p103t-516c6e3169a84834cab89780336951c507150a1b4e1cf8dda068207c21b92d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2015</creationdate><topic>Fertility</topic><topic>Forests</topic><topic>Mathematical models</topic><topic>Plantations</topic><topic>Regional</topic><topic>Rubber</topic><topic>Soil (material)</topic><topic>Spatial distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Pengtao</creatorcontrib><creatorcontrib>Li, Maofen</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Lin, Qinghuo</creatorcontrib><creatorcontrib>Tang, Qunfeng</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Nong ye gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Pengtao</au><au>Li, Maofen</au><au>Luo, Wei</au><au>Lin, Qinghuo</au><au>Tang, Qunfeng</au><au>Liu, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach</atitle><jtitle>Nong ye gong cheng xue bao</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>31</volume><issue>5</issue><spage>194</spage><epage>202</epage><pages>194-202</pages><issn>1002-6819</issn><abstract>Soil total nitrogen (STN) plays an important role in soil fertility and N cycle. Detailed information about the spatial distribution of STN is vital to effective management of soil fertility and better understanding of the process of N cycle. To date, however, few studies have been conducted to digitally map the spatial variation of STN for rubber plantation at the regional scale in Hainan Island, China. In this study, a relatively new method, random forest (RF) was proposed to predict and map the spatial pattern of STN for the rubber plantation. In this study, stepwise linear regression (SLR), generalized additive mixed model (GAMM), classification and regression tree (CART), and random forest (RF) were used to predict and map the spatial distribution of STN for the rubber plantation. The results suggested that RF is a promising approach in predicting spatial distribution of STN for rubber plantation at regional scale, and can be applied to predict other soil properties in regions with complex soil-environme</abstract><doi>10.3969/j.issn.1002-6819.2015.05.028</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-6819 |
ispartof | Nong ye gong cheng xue bao, 2015-03, Vol.31 (5), p.194-202 |
issn | 1002-6819 |
language | chi |
recordid | cdi_proquest_miscellaneous_1730085316 |
source | IngentaConnect Free/Open Access Journals |
subjects | Fertility Forests Mathematical models Plantations Regional Rubber Soil (material) Spatial distribution |
title | Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20soil%20total%20nitrogen%20for%20rubber%20plantation%20at%20regional%20scale%20based%20on%20environmental%20variables%20and%20random%20forest%20approach&rft.jtitle=Nong%20ye%20gong%20cheng%20xue%20bao&rft.au=Guo,%20Pengtao&rft.date=2015-03-01&rft.volume=31&rft.issue=5&rft.spage=194&rft.epage=202&rft.pages=194-202&rft.issn=1002-6819&rft_id=info:doi/10.3969/j.issn.1002-6819.2015.05.028&rft_dat=%3Cproquest%3E1730085316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730085316&rft_id=info:pmid/&rfr_iscdi=true |