Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing

Boride layers have potential industrial applications as abrasive and corrosion-resistant materials due to their high hardness values and chemical characteristics. In this study, boride layers are formed on the surface of St 14 steel samples using the plasma electrolyte method. The process was perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2015-08, Vol.276, p.529-533
Hauptverfasser: Tavakoli, H., Mousavi Khoie, S.M., Rasooli, F., Marashi, S.P.H., Momeni, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue
container_start_page 529
container_title Surface & coatings technology
container_volume 276
creator Tavakoli, H.
Mousavi Khoie, S.M.
Rasooli, F.
Marashi, S.P.H.
Momeni, F.
description Boride layers have potential industrial applications as abrasive and corrosion-resistant materials due to their high hardness values and chemical characteristics. In this study, boride layers are formed on the surface of St 14 steel samples using the plasma electrolyte method. The process was performed for a holding time of 10min at the preset temperature of around 900°C. The microstructure, hardness, and corrosion resistance characteristics of the boride layer are investigated by X-ray diffraction, hardness indentations and Tafel polarization. XRD results showed that boride layers are detectable on the surface of steel when the borax content of the solution is above 20wt.%. Moreover, there are no peaks of the boride phase in X-ray patterns when the borax content is below 20wt.%. Corrosion resistance characterization showed that layer created in 25% borax provides the best corrosion resistance. Maximum hardness values of samples processed with 10, 15, 20 and 25wt.% borax were 750, 915, 1100 and 1250HV, respectively. •The process was performed at the preset temperature of around 900°C and time of 10min.•Corrosion resistance of sample 25% borax is higher than that of the other samples.•Maximum hardness of samples obtained at 25wt.% borax was 1250HV.
doi_str_mv 10.1016/j.surfcoat.2015.06.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730082251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215300608</els_id><sourcerecordid>1730082251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8c56d2e021b187593118e353ca109cf1824359091593c0390f23747cc3e15aca3</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVpoK6brxB07GW3M9Jq_9xajJMUDLmkZyHPzsYy65UryQXn02ddp-eehmHee8z7CXGHUCJg_W1fplMcKLhcKkBTQl2Cgg9igW3TFVpXzUexAGWaou0a9Ul8TmkPANh01ULQemTKMdCOD57cKN3Uy-PunP4utHPRUeboU_aUZBhk3rFMmXmUObLL3MvtWR5Hlw6u4GvWOLuT3IYYJv_qp5cv4mZwY-Lb97kUv-7Xz6vHYvP08HP1Y1NQhSYXLZm6VwwKt_PnptOILWujySF0NGCrKm066HA-EegOBqWbqiHSjMaR00vx9Zp7jOH3iVO2B5-Ix9FNHE7JYqMBWqUMztL6KqUYUoo82GP0BxfPFsFeqNq9_UfVXqhaqO1MdTZ-vxp5LvLHc7SJPE_EvY9zedsH_7-IN6lXhTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730082251</pqid></control><display><type>article</type><title>Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing</title><source>Elsevier ScienceDirect Journals</source><creator>Tavakoli, H. ; Mousavi Khoie, S.M. ; Rasooli, F. ; Marashi, S.P.H. ; Momeni, F.</creator><creatorcontrib>Tavakoli, H. ; Mousavi Khoie, S.M. ; Rasooli, F. ; Marashi, S.P.H. ; Momeni, F.</creatorcontrib><description>Boride layers have potential industrial applications as abrasive and corrosion-resistant materials due to their high hardness values and chemical characteristics. In this study, boride layers are formed on the surface of St 14 steel samples using the plasma electrolyte method. The process was performed for a holding time of 10min at the preset temperature of around 900°C. The microstructure, hardness, and corrosion resistance characteristics of the boride layer are investigated by X-ray diffraction, hardness indentations and Tafel polarization. XRD results showed that boride layers are detectable on the surface of steel when the borax content of the solution is above 20wt.%. Moreover, there are no peaks of the boride phase in X-ray patterns when the borax content is below 20wt.%. Corrosion resistance characterization showed that layer created in 25% borax provides the best corrosion resistance. Maximum hardness values of samples processed with 10, 15, 20 and 25wt.% borax were 750, 915, 1100 and 1250HV, respectively. •The process was performed at the preset temperature of around 900°C and time of 10min.•Corrosion resistance of sample 25% borax is higher than that of the other samples.•Maximum hardness of samples obtained at 25wt.% borax was 1250HV.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.06.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Borax ; Borides ; Boronizing ; Corrosion resistance ; Diffraction ; Fe2B ; Hardness ; Low carbon steels ; Plasma-electrolysis ; Protective coatings ; Steels ; X-rays</subject><ispartof>Surface &amp; coatings technology, 2015-08, Vol.276, p.529-533</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8c56d2e021b187593118e353ca109cf1824359091593c0390f23747cc3e15aca3</citedby><cites>FETCH-LOGICAL-c415t-8c56d2e021b187593118e353ca109cf1824359091593c0390f23747cc3e15aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897215300608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tavakoli, H.</creatorcontrib><creatorcontrib>Mousavi Khoie, S.M.</creatorcontrib><creatorcontrib>Rasooli, F.</creatorcontrib><creatorcontrib>Marashi, S.P.H.</creatorcontrib><creatorcontrib>Momeni, F.</creatorcontrib><title>Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing</title><title>Surface &amp; coatings technology</title><description>Boride layers have potential industrial applications as abrasive and corrosion-resistant materials due to their high hardness values and chemical characteristics. In this study, boride layers are formed on the surface of St 14 steel samples using the plasma electrolyte method. The process was performed for a holding time of 10min at the preset temperature of around 900°C. The microstructure, hardness, and corrosion resistance characteristics of the boride layer are investigated by X-ray diffraction, hardness indentations and Tafel polarization. XRD results showed that boride layers are detectable on the surface of steel when the borax content of the solution is above 20wt.%. Moreover, there are no peaks of the boride phase in X-ray patterns when the borax content is below 20wt.%. Corrosion resistance characterization showed that layer created in 25% borax provides the best corrosion resistance. Maximum hardness values of samples processed with 10, 15, 20 and 25wt.% borax were 750, 915, 1100 and 1250HV, respectively. •The process was performed at the preset temperature of around 900°C and time of 10min.•Corrosion resistance of sample 25% borax is higher than that of the other samples.•Maximum hardness of samples obtained at 25wt.% borax was 1250HV.</description><subject>Borax</subject><subject>Borides</subject><subject>Boronizing</subject><subject>Corrosion resistance</subject><subject>Diffraction</subject><subject>Fe2B</subject><subject>Hardness</subject><subject>Low carbon steels</subject><subject>Plasma-electrolysis</subject><subject>Protective coatings</subject><subject>Steels</subject><subject>X-rays</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVpoK6brxB07GW3M9Jq_9xajJMUDLmkZyHPzsYy65UryQXn02ddp-eehmHee8z7CXGHUCJg_W1fplMcKLhcKkBTQl2Cgg9igW3TFVpXzUexAGWaou0a9Ul8TmkPANh01ULQemTKMdCOD57cKN3Uy-PunP4utHPRUeboU_aUZBhk3rFMmXmUObLL3MvtWR5Hlw6u4GvWOLuT3IYYJv_qp5cv4mZwY-Lb97kUv-7Xz6vHYvP08HP1Y1NQhSYXLZm6VwwKt_PnptOILWujySF0NGCrKm066HA-EegOBqWbqiHSjMaR00vx9Zp7jOH3iVO2B5-Ix9FNHE7JYqMBWqUMztL6KqUYUoo82GP0BxfPFsFeqNq9_UfVXqhaqO1MdTZ-vxp5LvLHc7SJPE_EvY9zedsH_7-IN6lXhTg</recordid><startdate>20150825</startdate><enddate>20150825</enddate><creator>Tavakoli, H.</creator><creator>Mousavi Khoie, S.M.</creator><creator>Rasooli, F.</creator><creator>Marashi, S.P.H.</creator><creator>Momeni, F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150825</creationdate><title>Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing</title><author>Tavakoli, H. ; Mousavi Khoie, S.M. ; Rasooli, F. ; Marashi, S.P.H. ; Momeni, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8c56d2e021b187593118e353ca109cf1824359091593c0390f23747cc3e15aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Borax</topic><topic>Borides</topic><topic>Boronizing</topic><topic>Corrosion resistance</topic><topic>Diffraction</topic><topic>Fe2B</topic><topic>Hardness</topic><topic>Low carbon steels</topic><topic>Plasma-electrolysis</topic><topic>Protective coatings</topic><topic>Steels</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavakoli, H.</creatorcontrib><creatorcontrib>Mousavi Khoie, S.M.</creatorcontrib><creatorcontrib>Rasooli, F.</creatorcontrib><creatorcontrib>Marashi, S.P.H.</creatorcontrib><creatorcontrib>Momeni, F.</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavakoli, H.</au><au>Mousavi Khoie, S.M.</au><au>Rasooli, F.</au><au>Marashi, S.P.H.</au><au>Momeni, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2015-08-25</date><risdate>2015</risdate><volume>276</volume><spage>529</spage><epage>533</epage><pages>529-533</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Boride layers have potential industrial applications as abrasive and corrosion-resistant materials due to their high hardness values and chemical characteristics. In this study, boride layers are formed on the surface of St 14 steel samples using the plasma electrolyte method. The process was performed for a holding time of 10min at the preset temperature of around 900°C. The microstructure, hardness, and corrosion resistance characteristics of the boride layer are investigated by X-ray diffraction, hardness indentations and Tafel polarization. XRD results showed that boride layers are detectable on the surface of steel when the borax content of the solution is above 20wt.%. Moreover, there are no peaks of the boride phase in X-ray patterns when the borax content is below 20wt.%. Corrosion resistance characterization showed that layer created in 25% borax provides the best corrosion resistance. Maximum hardness values of samples processed with 10, 15, 20 and 25wt.% borax were 750, 915, 1100 and 1250HV, respectively. •The process was performed at the preset temperature of around 900°C and time of 10min.•Corrosion resistance of sample 25% borax is higher than that of the other samples.•Maximum hardness of samples obtained at 25wt.% borax was 1250HV.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.06.020</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2015-08, Vol.276, p.529-533
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1730082251
source Elsevier ScienceDirect Journals
subjects Borax
Borides
Boronizing
Corrosion resistance
Diffraction
Fe2B
Hardness
Low carbon steels
Plasma-electrolysis
Protective coatings
Steels
X-rays
title Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20and%20physical%20characteristics%20of%20the%20steel%20treated%20by%20plasma-electrolysis%20boronizing&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Tavakoli,%20H.&rft.date=2015-08-25&rft.volume=276&rft.spage=529&rft.epage=533&rft.pages=529-533&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.06.020&rft_dat=%3Cproquest_cross%3E1730082251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730082251&rft_id=info:pmid/&rft_els_id=S0257897215300608&rfr_iscdi=true