Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system

The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-10, Vol.77, p.154-163
Hauptverfasser: Margossian, A., Bel, S., Hinterhoelzl, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 154
container_title Composites. Part A, Applied science and manufacturing
container_volume 77
creator Margossian, A.
Bel, S.
Hinterhoelzl, R.
description The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.
doi_str_mv 10.1016/j.compositesa.2015.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730080484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X15002146</els_id><sourcerecordid>1730080484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</originalsourceid><addsrcrecordid>eNqNUU2LFDEQbUTBdfU_xJuXbiuTziR9XMdPWPGi4C1Up6vdDN3JmMoI8yf8zWYckT0uFLyCevXq4zXNSwmdBLl9ve98Wg-JQyHGbgNSd7DtKjxqrqQ1ttW2h8c1V3pordLfnzbPmPcAoNQgr5rfbyhOIf4Q_g4z-kI5MJaQokizQLGmpVAUxximkMmfC7gIj3msjDmMmUSmEOeUPU2i3FFe02FBLsGL_4uJI58noHh7irjWymeq02LwVeqm6p04sOATF1qfN09mXJhe_MPr5tv7d193H9vbLx8-7W5uW690X1oCkCNsFM1mM3nASW-88ZNHO_b9TErPw9BraaTdQg00chgBQXtrjDSo1HXz6qJ7yOnnkbi4NbCnZcFI6chOGgVgobd9pQ4Xqs-JOdPsDjmsmE9Ogjt74Pbungfu7IGDratQe3eXXqq3_AqUHftAsf7q7zfdlMIDVP4ALseaNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730080484</pqid></control><display><type>article</type><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</creator><creatorcontrib>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</creatorcontrib><description>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2015.06.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Thermoplastic resin ; B. Thermomechanical ; Bending modulus ; Carbon fiber reinforced plastics ; D. Mechanical testing ; Dynamical systems ; Dynamics ; E. Forming ; Forming ; Mathematical analysis ; Mechanical analysis ; Thermoplastic resins</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2015-10, Vol.77, p.154-163</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</citedby><cites>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2015.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Margossian, A.</creatorcontrib><creatorcontrib>Bel, S.</creatorcontrib><creatorcontrib>Hinterhoelzl, R.</creatorcontrib><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><title>Composites. Part A, Applied science and manufacturing</title><description>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</description><subject>A. Thermoplastic resin</subject><subject>B. Thermomechanical</subject><subject>Bending modulus</subject><subject>Carbon fiber reinforced plastics</subject><subject>D. Mechanical testing</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>E. Forming</subject><subject>Forming</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Thermoplastic resins</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2LFDEQbUTBdfU_xJuXbiuTziR9XMdPWPGi4C1Up6vdDN3JmMoI8yf8zWYckT0uFLyCevXq4zXNSwmdBLl9ve98Wg-JQyHGbgNSd7DtKjxqrqQ1ttW2h8c1V3pordLfnzbPmPcAoNQgr5rfbyhOIf4Q_g4z-kI5MJaQokizQLGmpVAUxximkMmfC7gIj3msjDmMmUSmEOeUPU2i3FFe02FBLsGL_4uJI58noHh7irjWymeq02LwVeqm6p04sOATF1qfN09mXJhe_MPr5tv7d193H9vbLx8-7W5uW690X1oCkCNsFM1mM3nASW-88ZNHO_b9TErPw9BraaTdQg00chgBQXtrjDSo1HXz6qJ7yOnnkbi4NbCnZcFI6chOGgVgobd9pQ4Xqs-JOdPsDjmsmE9Ogjt74Pbungfu7IGDratQe3eXXqq3_AqUHftAsf7q7zfdlMIDVP4ALseaNg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Margossian, A.</creator><creator>Bel, S.</creator><creator>Hinterhoelzl, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20151001</creationdate><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><author>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Thermoplastic resin</topic><topic>B. Thermomechanical</topic><topic>Bending modulus</topic><topic>Carbon fiber reinforced plastics</topic><topic>D. Mechanical testing</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>E. Forming</topic><topic>Forming</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Thermoplastic resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margossian, A.</creatorcontrib><creatorcontrib>Bel, S.</creatorcontrib><creatorcontrib>Hinterhoelzl, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margossian, A.</au><au>Bel, S.</au><au>Hinterhoelzl, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>77</volume><spage>154</spage><epage>163</epage><pages>154-163</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2015.06.015</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2015-10, Vol.77, p.154-163
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_1730080484
source ScienceDirect Journals (5 years ago - present)
subjects A. Thermoplastic resin
B. Thermomechanical
Bending modulus
Carbon fiber reinforced plastics
D. Mechanical testing
Dynamical systems
Dynamics
E. Forming
Forming
Mathematical analysis
Mechanical analysis
Thermoplastic resins
title Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20characterisation%20of%20a%20molten%20unidirectional%20carbon%20fibre%20reinforced%20thermoplastic%20composite%20using%20a%20Dynamic%20Mechanical%20Analysis%20system&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Margossian,%20A.&rft.date=2015-10-01&rft.volume=77&rft.spage=154&rft.epage=163&rft.pages=154-163&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2015.06.015&rft_dat=%3Cproquest_cross%3E1730080484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730080484&rft_id=info:pmid/&rft_els_id=S1359835X15002146&rfr_iscdi=true