Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system
The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-10, Vol.77, p.154-163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 154 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 77 |
creator | Margossian, A. Bel, S. Hinterhoelzl, R. |
description | The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data. |
doi_str_mv | 10.1016/j.compositesa.2015.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730080484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X15002146</els_id><sourcerecordid>1730080484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</originalsourceid><addsrcrecordid>eNqNUU2LFDEQbUTBdfU_xJuXbiuTziR9XMdPWPGi4C1Up6vdDN3JmMoI8yf8zWYckT0uFLyCevXq4zXNSwmdBLl9ve98Wg-JQyHGbgNSd7DtKjxqrqQ1ttW2h8c1V3pordLfnzbPmPcAoNQgr5rfbyhOIf4Q_g4z-kI5MJaQokizQLGmpVAUxximkMmfC7gIj3msjDmMmUSmEOeUPU2i3FFe02FBLsGL_4uJI58noHh7irjWymeq02LwVeqm6p04sOATF1qfN09mXJhe_MPr5tv7d193H9vbLx8-7W5uW690X1oCkCNsFM1mM3nASW-88ZNHO_b9TErPw9BraaTdQg00chgBQXtrjDSo1HXz6qJ7yOnnkbi4NbCnZcFI6chOGgVgobd9pQ4Xqs-JOdPsDjmsmE9Ogjt74Pbungfu7IGDratQe3eXXqq3_AqUHftAsf7q7zfdlMIDVP4ALseaNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730080484</pqid></control><display><type>article</type><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</creator><creatorcontrib>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</creatorcontrib><description>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2015.06.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Thermoplastic resin ; B. Thermomechanical ; Bending modulus ; Carbon fiber reinforced plastics ; D. Mechanical testing ; Dynamical systems ; Dynamics ; E. Forming ; Forming ; Mathematical analysis ; Mechanical analysis ; Thermoplastic resins</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2015-10, Vol.77, p.154-163</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</citedby><cites>FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2015.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Margossian, A.</creatorcontrib><creatorcontrib>Bel, S.</creatorcontrib><creatorcontrib>Hinterhoelzl, R.</creatorcontrib><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><title>Composites. Part A, Applied science and manufacturing</title><description>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</description><subject>A. Thermoplastic resin</subject><subject>B. Thermomechanical</subject><subject>Bending modulus</subject><subject>Carbon fiber reinforced plastics</subject><subject>D. Mechanical testing</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>E. Forming</subject><subject>Forming</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Thermoplastic resins</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2LFDEQbUTBdfU_xJuXbiuTziR9XMdPWPGi4C1Up6vdDN3JmMoI8yf8zWYckT0uFLyCevXq4zXNSwmdBLl9ve98Wg-JQyHGbgNSd7DtKjxqrqQ1ttW2h8c1V3pordLfnzbPmPcAoNQgr5rfbyhOIf4Q_g4z-kI5MJaQokizQLGmpVAUxximkMmfC7gIj3msjDmMmUSmEOeUPU2i3FFe02FBLsGL_4uJI58noHh7irjWymeq02LwVeqm6p04sOATF1qfN09mXJhe_MPr5tv7d193H9vbLx8-7W5uW690X1oCkCNsFM1mM3nASW-88ZNHO_b9TErPw9BraaTdQg00chgBQXtrjDSo1HXz6qJ7yOnnkbi4NbCnZcFI6chOGgVgobd9pQ4Xqs-JOdPsDjmsmE9Ogjt74Pbungfu7IGDratQe3eXXqq3_AqUHftAsf7q7zfdlMIDVP4ALseaNg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Margossian, A.</creator><creator>Bel, S.</creator><creator>Hinterhoelzl, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20151001</creationdate><title>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</title><author>Margossian, A. ; Bel, S. ; Hinterhoelzl, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e001b023ef72dc0ad52c7cdca8b44fe35f9945171860860a719b0a05c87717a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Thermoplastic resin</topic><topic>B. Thermomechanical</topic><topic>Bending modulus</topic><topic>Carbon fiber reinforced plastics</topic><topic>D. Mechanical testing</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>E. Forming</topic><topic>Forming</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Thermoplastic resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margossian, A.</creatorcontrib><creatorcontrib>Bel, S.</creatorcontrib><creatorcontrib>Hinterhoelzl, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margossian, A.</au><au>Bel, S.</au><au>Hinterhoelzl, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>77</volume><spage>154</spage><epage>163</epage><pages>154-163</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>The quality of forming simulations based on Finite Element methods is mainly determined by the accuracy of the material properties. Out-of-plane bending is one of the deformation mechanisms that govern the appearance of wrinkles while forming composite reinforcements. This paper proposes a new test method using a Dynamic Mechanical Analysis (DMA) system for the characterisation of longitudinal out-of-plane bending properties of molten unidirectional thermoplastics. Investigations are presented for a unidirectional carbon fibre reinforced polyamide 6 composite. Several standard bending test fixtures are assessed quasistatically at three temperatures and three test speeds with specimens of different geometries. Additional tests are conducted at forming temperature with the selected test arrangement. The evaluation of different approaches for the calculation of the bending modulus shows the interlaminar shear to be negligible. Results highlight an important material strain rate dependency. The evolution of the bending modulus satisfies a linear fitting within the range of data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2015.06.015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2015-10, Vol.77, p.154-163 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730080484 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A. Thermoplastic resin B. Thermomechanical Bending modulus Carbon fiber reinforced plastics D. Mechanical testing Dynamical systems Dynamics E. Forming Forming Mathematical analysis Mechanical analysis Thermoplastic resins |
title | Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20characterisation%20of%20a%20molten%20unidirectional%20carbon%20fibre%20reinforced%20thermoplastic%20composite%20using%20a%20Dynamic%20Mechanical%20Analysis%20system&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Margossian,%20A.&rft.date=2015-10-01&rft.volume=77&rft.spage=154&rft.epage=163&rft.pages=154-163&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2015.06.015&rft_dat=%3Cproquest_cross%3E1730080484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730080484&rft_id=info:pmid/&rft_els_id=S1359835X15002146&rfr_iscdi=true |