Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material

Nondestructive assay (NDA) of special nuclear material (SNM) is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2015-01, Vol.2015 (2015), p.1-10
Hauptverfasser: Burr, Tom, Jarman, Ken, Croft, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2015
container_start_page 1
container_title Journal of sensors
container_volume 2015
creator Burr, Tom
Jarman, Ken
Croft, Stephen
description Nondestructive assay (NDA) of special nuclear material (SNM) is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express confidence in assay results. NDA specialists typically partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the SNM mass estimate in one item or for the total SNM mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we describe possible extensions to the GUM by illustrating UQ challenges in NDA that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using gamma spectra and applying the enrichment meter principle to estimate the 235U mass in an item. The case study illustrates how to update the ASTM international standard test method for application of the enrichment meter principle using gamma spectra.
doi_str_mv 10.1155/2015/267462
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730080454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730080454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a589t-e56252df9c381b286e7353540e1ee2d74285e2b05e7cbdf16d957ab267a0683e3</originalsourceid><addsrcrecordid>eNqF0UlLAzEUB_BBFFxP3iXgRZRqlsnSYyluUDe04G1IM29oZJoZk4zSmx_dlFERL16y8XuPR_5Ztk_wKSGcn1FM0iJkLuhatkWEkgNJhVr_OfPnzWw7hBeMBZOMbWUfU2fAR21dXKKHTrtoK2t0tI1D1qFR29bf16ZCcQ7o3Hlr5gtwEd1ABI_uvXXGtjWgqvHotnElhOg7E-0boFEIerkqfWzBWF2j287UoD260ak2PexmG5WuA-x97TvZ9OL8aXw1mNxdXo9Hk4HmahgHwAXltKyGhikyo0qAZJzxHAMBoKXMqeJAZ5iDNLOyIqIccqln6S80FooB28mO-r6tb167NGGxsMFAXWsHTRcKIhnGCuc8T_TwD31pOu_SdAURQ0m4wBgnddIr45sQPFRF6-1C-2VBcLFKo1ilUfRpJH3c67l1pX63_-CDHkMiUOlfWKYhFfsEAkqUGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697156000</pqid></control><display><type>article</type><title>Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Burr, Tom ; Jarman, Ken ; Croft, Stephen</creator><contributor>Corres, Jesus</contributor><creatorcontrib>Burr, Tom ; Jarman, Ken ; Croft, Stephen ; Corres, Jesus</creatorcontrib><description>Nondestructive assay (NDA) of special nuclear material (SNM) is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express confidence in assay results. NDA specialists typically partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the SNM mass estimate in one item or for the total SNM mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we describe possible extensions to the GUM by illustrating UQ challenges in NDA that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using gamma spectra and applying the enrichment meter principle to estimate the 235U mass in an item. The case study illustrates how to update the ASTM international standard test method for application of the enrichment meter principle using gamma spectra.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2015/267462</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Assaying ; Calibration ; Case studies ; Enrichment ; Errors ; Estimates ; Laboratories ; Mathematical models ; Measuring instruments ; Meters ; Random variables ; Uncertainty</subject><ispartof>Journal of sensors, 2015-01, Vol.2015 (2015), p.1-10</ispartof><rights>Copyright © 2015 Tom Burr et al.</rights><rights>Copyright © 2015 Tom Burr et al. Tom Burr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a589t-e56252df9c381b286e7353540e1ee2d74285e2b05e7cbdf16d957ab267a0683e3</citedby><cites>FETCH-LOGICAL-a589t-e56252df9c381b286e7353540e1ee2d74285e2b05e7cbdf16d957ab267a0683e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Corres, Jesus</contributor><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Jarman, Ken</creatorcontrib><creatorcontrib>Croft, Stephen</creatorcontrib><title>Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material</title><title>Journal of sensors</title><description>Nondestructive assay (NDA) of special nuclear material (SNM) is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express confidence in assay results. NDA specialists typically partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the SNM mass estimate in one item or for the total SNM mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we describe possible extensions to the GUM by illustrating UQ challenges in NDA that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using gamma spectra and applying the enrichment meter principle to estimate the 235U mass in an item. The case study illustrates how to update the ASTM international standard test method for application of the enrichment meter principle using gamma spectra.</description><subject>Assaying</subject><subject>Calibration</subject><subject>Case studies</subject><subject>Enrichment</subject><subject>Errors</subject><subject>Estimates</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Measuring instruments</subject><subject>Meters</subject><subject>Random variables</subject><subject>Uncertainty</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0UlLAzEUB_BBFFxP3iXgRZRqlsnSYyluUDe04G1IM29oZJoZk4zSmx_dlFERL16y8XuPR_5Ztk_wKSGcn1FM0iJkLuhatkWEkgNJhVr_OfPnzWw7hBeMBZOMbWUfU2fAR21dXKKHTrtoK2t0tI1D1qFR29bf16ZCcQ7o3Hlr5gtwEd1ABI_uvXXGtjWgqvHotnElhOg7E-0boFEIerkqfWzBWF2j287UoD260ak2PexmG5WuA-x97TvZ9OL8aXw1mNxdXo9Hk4HmahgHwAXltKyGhikyo0qAZJzxHAMBoKXMqeJAZ5iDNLOyIqIccqln6S80FooB28mO-r6tb167NGGxsMFAXWsHTRcKIhnGCuc8T_TwD31pOu_SdAURQ0m4wBgnddIr45sQPFRF6-1C-2VBcLFKo1ilUfRpJH3c67l1pX63_-CDHkMiUOlfWKYhFfsEAkqUGg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Burr, Tom</creator><creator>Jarman, Ken</creator><creator>Croft, Stephen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material</title><author>Burr, Tom ; Jarman, Ken ; Croft, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a589t-e56252df9c381b286e7353540e1ee2d74285e2b05e7cbdf16d957ab267a0683e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assaying</topic><topic>Calibration</topic><topic>Case studies</topic><topic>Enrichment</topic><topic>Errors</topic><topic>Estimates</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Measuring instruments</topic><topic>Meters</topic><topic>Random variables</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Jarman, Ken</creatorcontrib><creatorcontrib>Croft, Stephen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burr, Tom</au><au>Jarman, Ken</au><au>Croft, Stephen</au><au>Corres, Jesus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material</atitle><jtitle>Journal of sensors</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Nondestructive assay (NDA) of special nuclear material (SNM) is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express confidence in assay results. NDA specialists typically partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the SNM mass estimate in one item or for the total SNM mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we describe possible extensions to the GUM by illustrating UQ challenges in NDA that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using gamma spectra and applying the enrichment meter principle to estimate the 235U mass in an item. The case study illustrates how to update the ASTM international standard test method for application of the enrichment meter principle using gamma spectra.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/267462</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2015-01, Vol.2015 (2015), p.1-10
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_miscellaneous_1730080454
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Assaying
Calibration
Case studies
Enrichment
Errors
Estimates
Laboratories
Mathematical models
Measuring instruments
Meters
Random variables
Uncertainty
title Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20in%20Application%20of%20the%20Enrichment%20Meter%20Principle%20for%20Nondestructive%20Assay%20of%20Special%20Nuclear%20Material&rft.jtitle=Journal%20of%20sensors&rft.au=Burr,%20Tom&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2015/267462&rft_dat=%3Cproquest_cross%3E1730080454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697156000&rft_id=info:pmid/&rfr_iscdi=true