A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data
[Display omitted] •Differences in patient progression can significantly impact outcomes.•We present a methodology for interactive pattern mining and analysis of patient data.•Our approach combines ad hoc visual queries, mining, and interactive visualization.•Our methods uncover key event patterns an...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2014-04, Vol.48, p.148-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | |
container_start_page | 148 |
container_title | Journal of biomedical informatics |
container_volume | 48 |
creator | Gotz, David Wang, Fei Perer, Adam |
description | [Display omitted]
•Differences in patient progression can significantly impact outcomes.•We present a methodology for interactive pattern mining and analysis of patient data.•Our approach combines ad hoc visual queries, mining, and interactive visualization.•Our methods uncover key event patterns and their associations with outcome over time.•Prototype implementation applied to population of 32,000 cardiology patients.
Patients’ medical conditions often evolve in complex and seemingly unpredictable ways. Even within a relatively narrow and well-defined episode of care, variations between patients in both their progression and eventual outcome can be dramatic. Understanding the patterns of events observed within a population that most correlate with differences in outcome is therefore an important task in many types of studies using retrospective electronic health data. In this paper, we present a method for interactive pattern mining and analysis that supports ad hoc visual exploration of patterns mined from retrospective clinical patient data. Our approach combines (1) visual query capabilities to interactively specify episode definitions, (2) pattern mining techniques to help discover important intermediate events within an episode, and (3) interactive visualization techniques that help uncover event patterns that most impact outcome and how those associations change over time. In addition to presenting our methodology, we describe a prototype implementation and present use cases highlighting the types of insights or hypotheses that our approach can help uncover. |
doi_str_mv | 10.1016/j.jbi.2014.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730079663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046414000094</els_id><sourcerecordid>1730079663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e01d15fffbfd51a876c47a34dd6d81a0fde878f7802e980e44139e8e2755ce03</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxVcIRD_gD-CCfOSSZWbX9nrFqarKh1SJS--WY48bR7vrYDtB-e_rKKVH4DSj8e89We81zQeEFgHl5227XYe2A-QtYAswvGouUfTdCriC1y-75BfNVc5bAEQh5NvmouNcyV6Iy-b3DZupbKKLU3w8Mh8TC0uhZGwJB2JzWMLyyMzi2CHkvZnqaqZjDplFz-xUn2090oGWwnamVOWS2T6fRDSRLSlWgm3ITGXDEtmYHHOmmHfNG2-mTO-f53Xz8PXu4fb76v7ntx-3N_cry2VXVgToUHjv194JNGqQlg-m585Jp9CAd6QG5QcFHY0KiHPsR1LUDUJYgv66-XS23aX4a0-56DlkS9NkFor7rHHoa2yjlP1_oDCiUmLs_o0KHBUHIUVF8YzaFHNO5PUuhdmko0bQpxL1VtcS9alEDajrb6rm47P9fj2Te1H8aa0CX84A1eQOgZLONtBiyYUacdEuhr_YPwEoTK31</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519840565</pqid></control><display><type>article</type><title>A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gotz, David ; Wang, Fei ; Perer, Adam</creator><creatorcontrib>Gotz, David ; Wang, Fei ; Perer, Adam</creatorcontrib><description>[Display omitted]
•Differences in patient progression can significantly impact outcomes.•We present a methodology for interactive pattern mining and analysis of patient data.•Our approach combines ad hoc visual queries, mining, and interactive visualization.•Our methods uncover key event patterns and their associations with outcome over time.•Prototype implementation applied to population of 32,000 cardiology patients.
Patients’ medical conditions often evolve in complex and seemingly unpredictable ways. Even within a relatively narrow and well-defined episode of care, variations between patients in both their progression and eventual outcome can be dramatic. Understanding the patterns of events observed within a population that most correlate with differences in outcome is therefore an important task in many types of studies using retrospective electronic health data. In this paper, we present a method for interactive pattern mining and analysis that supports ad hoc visual exploration of patterns mined from retrospective clinical patient data. Our approach combines (1) visual query capabilities to interactively specify episode definitions, (2) pattern mining techniques to help discover important intermediate events within an episode, and (3) interactive visualization techniques that help uncover event patterns that most impact outcome and how those associations change over time. In addition to presenting our methodology, we describe a prototype implementation and present use cases highlighting the types of insights or hypotheses that our approach can help uncover.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2014.01.007</identifier><identifier>PMID: 24486355</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Algorithms ; Computer Systems ; Data mining ; Data Mining - methods ; Disease Progression ; Electronic Health Records ; Electronics ; Female ; Humans ; Interactive ; Interactive visualization ; Male ; Medical ; Medical Informatics - methods ; Methodology ; Middle Aged ; Models, Statistical ; Outcome analysis ; Patients ; Pattern analysis ; Pattern mining ; Retrospective Studies ; Software ; Time Factors ; Treatment Outcome ; Visual ; Visual analytics</subject><ispartof>Journal of biomedical informatics, 2014-04, Vol.48, p.148-159</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e01d15fffbfd51a876c47a34dd6d81a0fde878f7802e980e44139e8e2755ce03</citedby><cites>FETCH-LOGICAL-c462t-e01d15fffbfd51a876c47a34dd6d81a0fde878f7802e980e44139e8e2755ce03</cites><orcidid>0000-0002-5443-8783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2014.01.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24486355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gotz, David</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Perer, Adam</creatorcontrib><title>A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted]
•Differences in patient progression can significantly impact outcomes.•We present a methodology for interactive pattern mining and analysis of patient data.•Our approach combines ad hoc visual queries, mining, and interactive visualization.•Our methods uncover key event patterns and their associations with outcome over time.•Prototype implementation applied to population of 32,000 cardiology patients.
Patients’ medical conditions often evolve in complex and seemingly unpredictable ways. Even within a relatively narrow and well-defined episode of care, variations between patients in both their progression and eventual outcome can be dramatic. Understanding the patterns of events observed within a population that most correlate with differences in outcome is therefore an important task in many types of studies using retrospective electronic health data. In this paper, we present a method for interactive pattern mining and analysis that supports ad hoc visual exploration of patterns mined from retrospective clinical patient data. Our approach combines (1) visual query capabilities to interactively specify episode definitions, (2) pattern mining techniques to help discover important intermediate events within an episode, and (3) interactive visualization techniques that help uncover event patterns that most impact outcome and how those associations change over time. In addition to presenting our methodology, we describe a prototype implementation and present use cases highlighting the types of insights or hypotheses that our approach can help uncover.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Computer Systems</subject><subject>Data mining</subject><subject>Data Mining - methods</subject><subject>Disease Progression</subject><subject>Electronic Health Records</subject><subject>Electronics</subject><subject>Female</subject><subject>Humans</subject><subject>Interactive</subject><subject>Interactive visualization</subject><subject>Male</subject><subject>Medical</subject><subject>Medical Informatics - methods</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Outcome analysis</subject><subject>Patients</subject><subject>Pattern analysis</subject><subject>Pattern mining</subject><subject>Retrospective Studies</subject><subject>Software</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><subject>Visual</subject><subject>Visual analytics</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vEzEQxVcIRD_gD-CCfOSSZWbX9nrFqarKh1SJS--WY48bR7vrYDtB-e_rKKVH4DSj8e89We81zQeEFgHl5227XYe2A-QtYAswvGouUfTdCriC1y-75BfNVc5bAEQh5NvmouNcyV6Iy-b3DZupbKKLU3w8Mh8TC0uhZGwJB2JzWMLyyMzi2CHkvZnqaqZjDplFz-xUn2090oGWwnamVOWS2T6fRDSRLSlWgm3ITGXDEtmYHHOmmHfNG2-mTO-f53Xz8PXu4fb76v7ntx-3N_cry2VXVgToUHjv194JNGqQlg-m585Jp9CAd6QG5QcFHY0KiHPsR1LUDUJYgv66-XS23aX4a0-56DlkS9NkFor7rHHoa2yjlP1_oDCiUmLs_o0KHBUHIUVF8YzaFHNO5PUuhdmko0bQpxL1VtcS9alEDajrb6rm47P9fj2Te1H8aa0CX84A1eQOgZLONtBiyYUacdEuhr_YPwEoTK31</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Gotz, David</creator><creator>Wang, Fei</creator><creator>Perer, Adam</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5443-8783</orcidid></search><sort><creationdate>20140401</creationdate><title>A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data</title><author>Gotz, David ; Wang, Fei ; Perer, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e01d15fffbfd51a876c47a34dd6d81a0fde878f7802e980e44139e8e2755ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Computer Systems</topic><topic>Data mining</topic><topic>Data Mining - methods</topic><topic>Disease Progression</topic><topic>Electronic Health Records</topic><topic>Electronics</topic><topic>Female</topic><topic>Humans</topic><topic>Interactive</topic><topic>Interactive visualization</topic><topic>Male</topic><topic>Medical</topic><topic>Medical Informatics - methods</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Outcome analysis</topic><topic>Patients</topic><topic>Pattern analysis</topic><topic>Pattern mining</topic><topic>Retrospective Studies</topic><topic>Software</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><topic>Visual</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotz, David</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Perer, Adam</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotz, David</au><au>Wang, Fei</au><au>Perer, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>48</volume><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted]
•Differences in patient progression can significantly impact outcomes.•We present a methodology for interactive pattern mining and analysis of patient data.•Our approach combines ad hoc visual queries, mining, and interactive visualization.•Our methods uncover key event patterns and their associations with outcome over time.•Prototype implementation applied to population of 32,000 cardiology patients.
Patients’ medical conditions often evolve in complex and seemingly unpredictable ways. Even within a relatively narrow and well-defined episode of care, variations between patients in both their progression and eventual outcome can be dramatic. Understanding the patterns of events observed within a population that most correlate with differences in outcome is therefore an important task in many types of studies using retrospective electronic health data. In this paper, we present a method for interactive pattern mining and analysis that supports ad hoc visual exploration of patterns mined from retrospective clinical patient data. Our approach combines (1) visual query capabilities to interactively specify episode definitions, (2) pattern mining techniques to help discover important intermediate events within an episode, and (3) interactive visualization techniques that help uncover event patterns that most impact outcome and how those associations change over time. In addition to presenting our methodology, we describe a prototype implementation and present use cases highlighting the types of insights or hypotheses that our approach can help uncover.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24486355</pmid><doi>10.1016/j.jbi.2014.01.007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5443-8783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2014-04, Vol.48, p.148-159 |
issn | 1532-0464 1532-0480 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730079663 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aged Algorithms Computer Systems Data mining Data Mining - methods Disease Progression Electronic Health Records Electronics Female Humans Interactive Interactive visualization Male Medical Medical Informatics - methods Methodology Middle Aged Models, Statistical Outcome analysis Patients Pattern analysis Pattern mining Retrospective Studies Software Time Factors Treatment Outcome Visual Visual analytics |
title | A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20interactive%20mining%20and%20visual%20analysis%20of%20clinical%20event%20patterns%20using%20electronic%20health%20record%20data&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Gotz,%20David&rft.date=2014-04-01&rft.volume=48&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2014.01.007&rft_dat=%3Cproquest_cross%3E1730079663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519840565&rft_id=info:pmid/24486355&rft_els_id=S1532046414000094&rfr_iscdi=true |