Hausdorff dimension of three-period orbits in Birkhoff billiards

We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2012-07, Vol.25 (7), p.1947-1954
Hauptverfasser: MERENKOV, Sergei, ZHARNITSKY, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1954
container_issue 7
container_start_page 1947
container_title Nonlinearity
container_volume 25
creator MERENKOV, Sergei
ZHARNITSKY, Vadim
description We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
doi_str_mv 10.1088/0951-7715/25/7/1947
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730078810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730078810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqXwBSxZkFhC_OzYTjegAopUiQVmy3HeUw1pXOx04O9p1arTXc69VzqM3QJ_AN40FZ8pKI0BVQlVmQpmtTljE5AaSq3q-pxNTsQlu8r5m3OARsgJe1y4be5iIiq6sMYhhzgUkYpxlRDLDaYQuyKmNoy5CEPxHNLPKu7gNvR9cKnL1-yCXJ_x5phT9vX68jlflMuPt_f507L0QouxVKJFKZwmNFwK1UjoatRckYa6VsILIvJkOJKsvQbAWeOkaQlrRySwlVN2f9jdpPi7xTzadcge-94NGLfZgpGcm6YBvkPlAfUp5pyQ7CaFtUt_Frjd-7J7G3Zvwwpljd372rXujgcue9dTcoMP-VQVGiQYZeQ_LE5qwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730078810</pqid></control><display><type>article</type><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><source>Institute of Physics Journals</source><creator>MERENKOV, Sergei ; ZHARNITSKY, Vadim</creator><creatorcontrib>MERENKOV, Sergei ; ZHARNITSKY, Vadim</creatorcontrib><description>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/25/7/1947</identifier><language>eng</language><publisher>Bristol: Institute of Physics</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Orbits ; Other topics in mathematical methods in physics ; Physics ; Sciences and techniques of general use ; Tangents ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2012-07, Vol.25 (7), p.1947-1954</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26131757$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MERENKOV, Sergei</creatorcontrib><creatorcontrib>ZHARNITSKY, Vadim</creatorcontrib><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><title>Nonlinearity</title><description>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Orbits</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Tangents</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEqXwBSxZkFhC_OzYTjegAopUiQVmy3HeUw1pXOx04O9p1arTXc69VzqM3QJ_AN40FZ8pKI0BVQlVmQpmtTljE5AaSq3q-pxNTsQlu8r5m3OARsgJe1y4be5iIiq6sMYhhzgUkYpxlRDLDaYQuyKmNoy5CEPxHNLPKu7gNvR9cKnL1-yCXJ_x5phT9vX68jlflMuPt_f507L0QouxVKJFKZwmNFwK1UjoatRckYa6VsILIvJkOJKsvQbAWeOkaQlrRySwlVN2f9jdpPi7xTzadcge-94NGLfZgpGcm6YBvkPlAfUp5pyQ7CaFtUt_Frjd-7J7G3Zvwwpljd372rXujgcue9dTcoMP-VQVGiQYZeQ_LE5qwQ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>MERENKOV, Sergei</creator><creator>ZHARNITSKY, Vadim</creator><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><author>MERENKOV, Sergei ; ZHARNITSKY, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Orbits</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Tangents</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MERENKOV, Sergei</creatorcontrib><creatorcontrib>ZHARNITSKY, Vadim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MERENKOV, Sergei</au><au>ZHARNITSKY, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hausdorff dimension of three-period orbits in Birkhoff billiards</atitle><jtitle>Nonlinearity</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>25</volume><issue>7</issue><spage>1947</spage><epage>1954</epage><pages>1947-1954</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</abstract><cop>Bristol</cop><pub>Institute of Physics</pub><doi>10.1088/0951-7715/25/7/1947</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2012-07, Vol.25 (7), p.1947-1954
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_1730078810
source Institute of Physics Journals
subjects Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical methods in physics
Mathematics
Nonlinearity
Orbits
Other topics in mathematical methods in physics
Physics
Sciences and techniques of general use
Tangents
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Hausdorff dimension of three-period orbits in Birkhoff billiards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hausdorff%20dimension%20of%20three-period%20orbits%20in%20Birkhoff%20billiards&rft.jtitle=Nonlinearity&rft.au=MERENKOV,%20Sergei&rft.date=2012-07-01&rft.volume=25&rft.issue=7&rft.spage=1947&rft.epage=1954&rft.pages=1947-1954&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/25/7/1947&rft_dat=%3Cproquest_cross%3E1730078810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730078810&rft_id=info:pmid/&rfr_iscdi=true