Hausdorff dimension of three-period orbits in Birkhoff billiards
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2012-07, Vol.25 (7), p.1947-1954 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1954 |
---|---|
container_issue | 7 |
container_start_page | 1947 |
container_title | Nonlinearity |
container_volume | 25 |
creator | MERENKOV, Sergei ZHARNITSKY, Vadim |
description | We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point. |
doi_str_mv | 10.1088/0951-7715/25/7/1947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730078810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730078810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqXwBSxZkFhC_OzYTjegAopUiQVmy3HeUw1pXOx04O9p1arTXc69VzqM3QJ_AN40FZ8pKI0BVQlVmQpmtTljE5AaSq3q-pxNTsQlu8r5m3OARsgJe1y4be5iIiq6sMYhhzgUkYpxlRDLDaYQuyKmNoy5CEPxHNLPKu7gNvR9cKnL1-yCXJ_x5phT9vX68jlflMuPt_f507L0QouxVKJFKZwmNFwK1UjoatRckYa6VsILIvJkOJKsvQbAWeOkaQlrRySwlVN2f9jdpPi7xTzadcge-94NGLfZgpGcm6YBvkPlAfUp5pyQ7CaFtUt_Frjd-7J7G3Zvwwpljd372rXujgcue9dTcoMP-VQVGiQYZeQ_LE5qwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730078810</pqid></control><display><type>article</type><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><source>Institute of Physics Journals</source><creator>MERENKOV, Sergei ; ZHARNITSKY, Vadim</creator><creatorcontrib>MERENKOV, Sergei ; ZHARNITSKY, Vadim</creatorcontrib><description>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/25/7/1947</identifier><language>eng</language><publisher>Bristol: Institute of Physics</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Orbits ; Other topics in mathematical methods in physics ; Physics ; Sciences and techniques of general use ; Tangents ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2012-07, Vol.25 (7), p.1947-1954</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26131757$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MERENKOV, Sergei</creatorcontrib><creatorcontrib>ZHARNITSKY, Vadim</creatorcontrib><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><title>Nonlinearity</title><description>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Orbits</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Tangents</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEqXwBSxZkFhC_OzYTjegAopUiQVmy3HeUw1pXOx04O9p1arTXc69VzqM3QJ_AN40FZ8pKI0BVQlVmQpmtTljE5AaSq3q-pxNTsQlu8r5m3OARsgJe1y4be5iIiq6sMYhhzgUkYpxlRDLDaYQuyKmNoy5CEPxHNLPKu7gNvR9cKnL1-yCXJ_x5phT9vX68jlflMuPt_f507L0QouxVKJFKZwmNFwK1UjoatRckYa6VsILIvJkOJKsvQbAWeOkaQlrRySwlVN2f9jdpPi7xTzadcge-94NGLfZgpGcm6YBvkPlAfUp5pyQ7CaFtUt_Frjd-7J7G3Zvwwpljd372rXujgcue9dTcoMP-VQVGiQYZeQ_LE5qwQ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>MERENKOV, Sergei</creator><creator>ZHARNITSKY, Vadim</creator><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Hausdorff dimension of three-period orbits in Birkhoff billiards</title><author>MERENKOV, Sergei ; ZHARNITSKY, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-52be32a6fe70325831d4e605f614452c2fffcf70ef34c611e98a37bfe4aff2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Orbits</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Tangents</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MERENKOV, Sergei</creatorcontrib><creatorcontrib>ZHARNITSKY, Vadim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MERENKOV, Sergei</au><au>ZHARNITSKY, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hausdorff dimension of three-period orbits in Birkhoff billiards</atitle><jtitle>Nonlinearity</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>25</volume><issue>7</issue><spage>1947</spage><epage>1954</epage><pages>1947-1954</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.</abstract><cop>Bristol</cop><pub>Institute of Physics</pub><doi>10.1088/0951-7715/25/7/1947</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2012-07, Vol.25 (7), p.1947-1954 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730078810 |
source | Institute of Physics Journals |
subjects | Exact sciences and technology Global analysis, analysis on manifolds Mathematical methods in physics Mathematics Nonlinearity Orbits Other topics in mathematical methods in physics Physics Sciences and techniques of general use Tangents Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Hausdorff dimension of three-period orbits in Birkhoff billiards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hausdorff%20dimension%20of%20three-period%20orbits%20in%20Birkhoff%20billiards&rft.jtitle=Nonlinearity&rft.au=MERENKOV,%20Sergei&rft.date=2012-07-01&rft.volume=25&rft.issue=7&rft.spage=1947&rft.epage=1954&rft.pages=1947-1954&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/25/7/1947&rft_dat=%3Cproquest_cross%3E1730078810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730078810&rft_id=info:pmid/&rfr_iscdi=true |