Temperature-responsive nanofibers for controllable oil/water separation

Surface functionalization with stimuli-responsive materials can turn an ordinary material into a smart one that shows adaptive properties upon external stimuli. In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane was firstly prepared; subsequently, poly( N -isopropylacrylam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2015-01, Vol.5 (63), p.51078-51085
Hauptverfasser: Wang, Yuanfeng, Lai, Chuilin, Hu, Huawen, Liu, Yang, Fei, Bin, Xin, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51085
container_issue 63
container_start_page 51078
container_title RSC advances
container_volume 5
creator Wang, Yuanfeng
Lai, Chuilin
Hu, Huawen
Liu, Yang
Fei, Bin
Xin, John H.
description Surface functionalization with stimuli-responsive materials can turn an ordinary material into a smart one that shows adaptive properties upon external stimuli. In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane was firstly prepared; subsequently, poly( N -isopropylacrylamide) (PNIPAAm), a thermo-responsive polymer, was surface grafted to form the polymer chains/brushes on the surface of RC nanofibers via the surface-initiated atom transfer radical polymerization (SI-ATRP) method. Thereafter, the PNIPAAm-modified RC nanofibrous membrane was investigated for its temperature-responsive surface wettability at temperatures below/above the lower critical solution temperature (LCST). Furthermore, the nature of the hydrophilic/hydrophobic transitions of the modified nanofibrous membrane was also investigated through the water up-take and release experiment at various temperatures. Especially, as responses to different temperatures, the PNIPAAm-grafted nanofibrous membrane exhibits switchable super-lyophilic/super-lyophobic properties at a water–oil–solid three-phase interface. With the large surface area and switchable surface wettability, the as-prepared PNIPAAm-grafted nanofibrous membrane exhibits excellent properties of controllable oil/water separation, and possesses great potential towards both wastewater treatment and oil purification.
doi_str_mv 10.1039/C5RA08851H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730078448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730078448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c4078f8475c61e3187498a6b0d81bb386422b6e51849104b27be3706a633dbfc3</originalsourceid><addsrcrecordid>eNpNkEFLxDAQhYMouKx78Rf0KELdSZMm6XEpuissCLKeS5KdQKVNatIq_nsru6DvMu_wZubxEXJL4YECq9Z1-boBpUq6uyCLArjICxDV5T9_TVYpvcMsUdJC0AXZHrAfMOpxiphHTEPwqf3EzGsfXGswpsyFmNngxxi6TpsOs9B26y89YswSDnrebYO_IVdOdwlX57kkb0-Ph3qX71-2z_Vmn1vGYMwtB6mc4rK0giKjSvJKaWHgqKgxTAleFEZgSRWvKHBTSINMgtCCsaNxli3J3enuEMPHhGls-jZZnJt5DFNqqGQwv-BczdH7U9TGkFJE1wyx7XX8big0v8CaP2DsB1ArXRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730078448</pqid></control><display><type>article</type><title>Temperature-responsive nanofibers for controllable oil/water separation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yuanfeng ; Lai, Chuilin ; Hu, Huawen ; Liu, Yang ; Fei, Bin ; Xin, John H.</creator><creatorcontrib>Wang, Yuanfeng ; Lai, Chuilin ; Hu, Huawen ; Liu, Yang ; Fei, Bin ; Xin, John H.</creatorcontrib><description>Surface functionalization with stimuli-responsive materials can turn an ordinary material into a smart one that shows adaptive properties upon external stimuli. In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane was firstly prepared; subsequently, poly( N -isopropylacrylamide) (PNIPAAm), a thermo-responsive polymer, was surface grafted to form the polymer chains/brushes on the surface of RC nanofibers via the surface-initiated atom transfer radical polymerization (SI-ATRP) method. Thereafter, the PNIPAAm-modified RC nanofibrous membrane was investigated for its temperature-responsive surface wettability at temperatures below/above the lower critical solution temperature (LCST). Furthermore, the nature of the hydrophilic/hydrophobic transitions of the modified nanofibrous membrane was also investigated through the water up-take and release experiment at various temperatures. Especially, as responses to different temperatures, the PNIPAAm-grafted nanofibrous membrane exhibits switchable super-lyophilic/super-lyophobic properties at a water–oil–solid three-phase interface. With the large surface area and switchable surface wettability, the as-prepared PNIPAAm-grafted nanofibrous membrane exhibits excellent properties of controllable oil/water separation, and possesses great potential towards both wastewater treatment and oil purification.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/C5RA08851H</identifier><language>eng</language><subject>Glass transition temperature ; Membranes ; Nanofibers ; Nanostructure ; Polymerization ; Separation ; Stability ; Wettability</subject><ispartof>RSC advances, 2015-01, Vol.5 (63), p.51078-51085</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c4078f8475c61e3187498a6b0d81bb386422b6e51849104b27be3706a633dbfc3</citedby><cites>FETCH-LOGICAL-c330t-c4078f8475c61e3187498a6b0d81bb386422b6e51849104b27be3706a633dbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yuanfeng</creatorcontrib><creatorcontrib>Lai, Chuilin</creatorcontrib><creatorcontrib>Hu, Huawen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><title>Temperature-responsive nanofibers for controllable oil/water separation</title><title>RSC advances</title><description>Surface functionalization with stimuli-responsive materials can turn an ordinary material into a smart one that shows adaptive properties upon external stimuli. In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane was firstly prepared; subsequently, poly( N -isopropylacrylamide) (PNIPAAm), a thermo-responsive polymer, was surface grafted to form the polymer chains/brushes on the surface of RC nanofibers via the surface-initiated atom transfer radical polymerization (SI-ATRP) method. Thereafter, the PNIPAAm-modified RC nanofibrous membrane was investigated for its temperature-responsive surface wettability at temperatures below/above the lower critical solution temperature (LCST). Furthermore, the nature of the hydrophilic/hydrophobic transitions of the modified nanofibrous membrane was also investigated through the water up-take and release experiment at various temperatures. Especially, as responses to different temperatures, the PNIPAAm-grafted nanofibrous membrane exhibits switchable super-lyophilic/super-lyophobic properties at a water–oil–solid three-phase interface. With the large surface area and switchable surface wettability, the as-prepared PNIPAAm-grafted nanofibrous membrane exhibits excellent properties of controllable oil/water separation, and possesses great potential towards both wastewater treatment and oil purification.</description><subject>Glass transition temperature</subject><subject>Membranes</subject><subject>Nanofibers</subject><subject>Nanostructure</subject><subject>Polymerization</subject><subject>Separation</subject><subject>Stability</subject><subject>Wettability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLxDAQhYMouKx78Rf0KELdSZMm6XEpuissCLKeS5KdQKVNatIq_nsru6DvMu_wZubxEXJL4YECq9Z1-boBpUq6uyCLArjICxDV5T9_TVYpvcMsUdJC0AXZHrAfMOpxiphHTEPwqf3EzGsfXGswpsyFmNngxxi6TpsOs9B26y89YswSDnrebYO_IVdOdwlX57kkb0-Ph3qX71-2z_Vmn1vGYMwtB6mc4rK0giKjSvJKaWHgqKgxTAleFEZgSRWvKHBTSINMgtCCsaNxli3J3enuEMPHhGls-jZZnJt5DFNqqGQwv-BczdH7U9TGkFJE1wyx7XX8big0v8CaP2DsB1ArXRg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wang, Yuanfeng</creator><creator>Lai, Chuilin</creator><creator>Hu, Huawen</creator><creator>Liu, Yang</creator><creator>Fei, Bin</creator><creator>Xin, John H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Temperature-responsive nanofibers for controllable oil/water separation</title><author>Wang, Yuanfeng ; Lai, Chuilin ; Hu, Huawen ; Liu, Yang ; Fei, Bin ; Xin, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c4078f8475c61e3187498a6b0d81bb386422b6e51849104b27be3706a633dbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Glass transition temperature</topic><topic>Membranes</topic><topic>Nanofibers</topic><topic>Nanostructure</topic><topic>Polymerization</topic><topic>Separation</topic><topic>Stability</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanfeng</creatorcontrib><creatorcontrib>Lai, Chuilin</creatorcontrib><creatorcontrib>Hu, Huawen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanfeng</au><au>Lai, Chuilin</au><au>Hu, Huawen</au><au>Liu, Yang</au><au>Fei, Bin</au><au>Xin, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-responsive nanofibers for controllable oil/water separation</atitle><jtitle>RSC advances</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>63</issue><spage>51078</spage><epage>51085</epage><pages>51078-51085</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Surface functionalization with stimuli-responsive materials can turn an ordinary material into a smart one that shows adaptive properties upon external stimuli. In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane was firstly prepared; subsequently, poly( N -isopropylacrylamide) (PNIPAAm), a thermo-responsive polymer, was surface grafted to form the polymer chains/brushes on the surface of RC nanofibers via the surface-initiated atom transfer radical polymerization (SI-ATRP) method. Thereafter, the PNIPAAm-modified RC nanofibrous membrane was investigated for its temperature-responsive surface wettability at temperatures below/above the lower critical solution temperature (LCST). Furthermore, the nature of the hydrophilic/hydrophobic transitions of the modified nanofibrous membrane was also investigated through the water up-take and release experiment at various temperatures. Especially, as responses to different temperatures, the PNIPAAm-grafted nanofibrous membrane exhibits switchable super-lyophilic/super-lyophobic properties at a water–oil–solid three-phase interface. With the large surface area and switchable surface wettability, the as-prepared PNIPAAm-grafted nanofibrous membrane exhibits excellent properties of controllable oil/water separation, and possesses great potential towards both wastewater treatment and oil purification.</abstract><doi>10.1039/C5RA08851H</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2015-01, Vol.5 (63), p.51078-51085
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_1730078448
source Royal Society Of Chemistry Journals 2008-
subjects Glass transition temperature
Membranes
Nanofibers
Nanostructure
Polymerization
Separation
Stability
Wettability
title Temperature-responsive nanofibers for controllable oil/water separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-responsive%20nanofibers%20for%20controllable%20oil/water%20separation&rft.jtitle=RSC%20advances&rft.au=Wang,%20Yuanfeng&rft.date=2015-01-01&rft.volume=5&rft.issue=63&rft.spage=51078&rft.epage=51085&rft.pages=51078-51085&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/C5RA08851H&rft_dat=%3Cproquest_cross%3E1730078448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730078448&rft_id=info:pmid/&rfr_iscdi=true