Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications

Amorphous alumina–zirconia (Al 2 O 3 –ZrO 2 ) nanoparticles were produced by hot-air spray pyrolysis method. Two and six layers of anticorrosive coating of epoxy polyamide (EP) resin and mixture of amorphous Al 2 O 3 –ZrO 2 nanoparticles in epoxy polyamide resin (NEP), respectively, were applied on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2015-05, Vol.74 (2), p.460-471
Hauptverfasser: Karthik, A., Arunmetha, S., Srither, S. R., Manivasakan, P., Rajendran, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 2
container_start_page 460
container_title Journal of sol-gel science and technology
container_volume 74
creator Karthik, A.
Arunmetha, S.
Srither, S. R.
Manivasakan, P.
Rajendran, V.
description Amorphous alumina–zirconia (Al 2 O 3 –ZrO 2 ) nanoparticles were produced by hot-air spray pyrolysis method. Two and six layers of anticorrosive coating of epoxy polyamide (EP) resin and mixture of amorphous Al 2 O 3 –ZrO 2 nanoparticles in epoxy polyamide resin (NEP), respectively, were applied on SS 316L specimens. The performance of EP and NEP coated samples was comprehensively characterized. The results show that the sample with six layers of NEP coating (SSNEP6) has enhanced thermal, elastic properties and chemical resistance than that with six layers of EP coating (SSEP6). Thermo gravimetric analysis reveals that EP sample decomposed at 523 °C whereas NEP sample has extended thermal stability up to 750 °C with minimum residual mass. The thermal conductivity of EP sample is 0.124 while for NEP is about 0.263 W/mK. The hardness and reduced elastic modulus of SSNEP6 sample were, respectively, 318.32 MPa and 5.98 GPa whereas those of SSEP6 sample were 233.69 MPa and 4.17 GPa. Further, in-situ scanning probe microscopy (SPM)-nanoindentation and atomic force microscopy (AFM) images were obtained to explore the formation of Al 2 O 3 –ZrO 2 nano filler in EP matrix. The samples coated with multilayers of EP and NEP was exposed to acid immersion (10 % of H 2 SO 4 ) for 48 h. The SPM and AFM microstructure images show that the NEP coated sample maintains its original surface feature with existing passive layer formation, whereas EP coated sample shows surface deterioration and deformation. In addition, stability of EP and NEP coated samples was measured in terms of surface roughness with respect to nano filler in epoxy matrix. This observation shows that Al 2 O 3 –ZrO 2 nanofiller can be used to improve the desirable properties in host epoxy matrix.
doi_str_mv 10.1007/s10971-015-3621-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730078127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730078127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-546f9b4f096021d54c2da620f02c5cfbf976b7477dc546628748bb1555d0d5853</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4ewF3BjZvqOWnStEsZvIHoRheuQpqmkqFNatIRx5Xv4Bv6JGYYQRBcHTh8_885HyFHCKcIIM4iQi0wB-R5UVLMqy0yQy6KnFWs3CYzqGmVgwCxS_ZiXAAAZyhm5OlOOZ-pfjlYp74-Pt9t0N5ZlTW9ca1pMzP6t1U2-n41mGB1pv0w-mgnE7POh0y5yWofQlq9mkyNY2-1mqx38YDsdKqP5vBn7pPHy4uH-XV-e391Mz-_zTXDeso5K7u6YR3UJVBsOdO0VSWFDqjmumu6WpSNYEK0OqElrQSrmgY55y20vOLFPjnZ9I7BvyxNnORgozZ9r5zxyyhRFElQhVQk9PgPuvDL4NJ1klJe8wIZrgtxQ-n0VQymk2OwgworiSDXsuVGtkyy5Vq2rFKGbjIxse7ZhN_m_0PfeUWDIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259531415</pqid></control><display><type>article</type><title>Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Karthik, A. ; Arunmetha, S. ; Srither, S. R. ; Manivasakan, P. ; Rajendran, V.</creator><creatorcontrib>Karthik, A. ; Arunmetha, S. ; Srither, S. R. ; Manivasakan, P. ; Rajendran, V.</creatorcontrib><description>Amorphous alumina–zirconia (Al 2 O 3 –ZrO 2 ) nanoparticles were produced by hot-air spray pyrolysis method. Two and six layers of anticorrosive coating of epoxy polyamide (EP) resin and mixture of amorphous Al 2 O 3 –ZrO 2 nanoparticles in epoxy polyamide resin (NEP), respectively, were applied on SS 316L specimens. The performance of EP and NEP coated samples was comprehensively characterized. The results show that the sample with six layers of NEP coating (SSNEP6) has enhanced thermal, elastic properties and chemical resistance than that with six layers of EP coating (SSEP6). Thermo gravimetric analysis reveals that EP sample decomposed at 523 °C whereas NEP sample has extended thermal stability up to 750 °C with minimum residual mass. The thermal conductivity of EP sample is 0.124 while for NEP is about 0.263 W/mK. The hardness and reduced elastic modulus of SSNEP6 sample were, respectively, 318.32 MPa and 5.98 GPa whereas those of SSEP6 sample were 233.69 MPa and 4.17 GPa. Further, in-situ scanning probe microscopy (SPM)-nanoindentation and atomic force microscopy (AFM) images were obtained to explore the formation of Al 2 O 3 –ZrO 2 nano filler in EP matrix. The samples coated with multilayers of EP and NEP was exposed to acid immersion (10 % of H 2 SO 4 ) for 48 h. The SPM and AFM microstructure images show that the NEP coated sample maintains its original surface feature with existing passive layer formation, whereas EP coated sample shows surface deterioration and deformation. In addition, stability of EP and NEP coated samples was measured in terms of surface roughness with respect to nano filler in epoxy matrix. This observation shows that Al 2 O 3 –ZrO 2 nanofiller can be used to improve the desirable properties in host epoxy matrix.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-015-3621-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Atomic force microscopy ; Austenitic stainless steels ; Ceramics ; Chemistry and Materials Science ; Coating ; Composites ; Corrosion prevention ; Corrosion resistance ; Deformation ; Elastic properties ; Fillers ; Formations ; Glass ; Gravimetric analysis ; Heat resistant steels ; Inorganic Chemistry ; Materials Science ; Microscopy ; Modulus of elasticity ; Multilayers ; Nanoindentation ; Nanoparticles ; Nanostructure ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Organic chemistry ; Original Paper ; Polyamide resins ; Protective coatings ; Scanning probe microscopy ; Spray pyrolysis ; Submerging ; Sulfuric acid ; Surface roughness ; Surface stability ; Thermal conductivity ; Thermal stability ; Zirconium dioxide</subject><ispartof>Journal of sol-gel science and technology, 2015-05, Vol.74 (2), p.460-471</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-546f9b4f096021d54c2da620f02c5cfbf976b7477dc546628748bb1555d0d5853</citedby><cites>FETCH-LOGICAL-c419t-546f9b4f096021d54c2da620f02c5cfbf976b7477dc546628748bb1555d0d5853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-015-3621-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-015-3621-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Karthik, A.</creatorcontrib><creatorcontrib>Arunmetha, S.</creatorcontrib><creatorcontrib>Srither, S. R.</creatorcontrib><creatorcontrib>Manivasakan, P.</creatorcontrib><creatorcontrib>Rajendran, V.</creatorcontrib><title>Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Amorphous alumina–zirconia (Al 2 O 3 –ZrO 2 ) nanoparticles were produced by hot-air spray pyrolysis method. Two and six layers of anticorrosive coating of epoxy polyamide (EP) resin and mixture of amorphous Al 2 O 3 –ZrO 2 nanoparticles in epoxy polyamide resin (NEP), respectively, were applied on SS 316L specimens. The performance of EP and NEP coated samples was comprehensively characterized. The results show that the sample with six layers of NEP coating (SSNEP6) has enhanced thermal, elastic properties and chemical resistance than that with six layers of EP coating (SSEP6). Thermo gravimetric analysis reveals that EP sample decomposed at 523 °C whereas NEP sample has extended thermal stability up to 750 °C with minimum residual mass. The thermal conductivity of EP sample is 0.124 while for NEP is about 0.263 W/mK. The hardness and reduced elastic modulus of SSNEP6 sample were, respectively, 318.32 MPa and 5.98 GPa whereas those of SSEP6 sample were 233.69 MPa and 4.17 GPa. Further, in-situ scanning probe microscopy (SPM)-nanoindentation and atomic force microscopy (AFM) images were obtained to explore the formation of Al 2 O 3 –ZrO 2 nano filler in EP matrix. The samples coated with multilayers of EP and NEP was exposed to acid immersion (10 % of H 2 SO 4 ) for 48 h. The SPM and AFM microstructure images show that the NEP coated sample maintains its original surface feature with existing passive layer formation, whereas EP coated sample shows surface deterioration and deformation. In addition, stability of EP and NEP coated samples was measured in terms of surface roughness with respect to nano filler in epoxy matrix. This observation shows that Al 2 O 3 –ZrO 2 nanofiller can be used to improve the desirable properties in host epoxy matrix.</description><subject>Aluminum oxide</subject><subject>Atomic force microscopy</subject><subject>Austenitic stainless steels</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Composites</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Fillers</subject><subject>Formations</subject><subject>Glass</subject><subject>Gravimetric analysis</subject><subject>Heat resistant steels</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Multilayers</subject><subject>Nanoindentation</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Polyamide resins</subject><subject>Protective coatings</subject><subject>Scanning probe microscopy</subject><subject>Spray pyrolysis</subject><subject>Submerging</subject><subject>Sulfuric acid</subject><subject>Surface roughness</subject><subject>Surface stability</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><subject>Zirconium dioxide</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKxDAUhoMoOF4ewF3BjZvqOWnStEsZvIHoRheuQpqmkqFNatIRx5Xv4Bv6JGYYQRBcHTh8_885HyFHCKcIIM4iQi0wB-R5UVLMqy0yQy6KnFWs3CYzqGmVgwCxS_ZiXAAAZyhm5OlOOZ-pfjlYp74-Pt9t0N5ZlTW9ca1pMzP6t1U2-n41mGB1pv0w-mgnE7POh0y5yWofQlq9mkyNY2-1mqx38YDsdKqP5vBn7pPHy4uH-XV-e391Mz-_zTXDeso5K7u6YR3UJVBsOdO0VSWFDqjmumu6WpSNYEK0OqElrQSrmgY55y20vOLFPjnZ9I7BvyxNnORgozZ9r5zxyyhRFElQhVQk9PgPuvDL4NJ1klJe8wIZrgtxQ-n0VQymk2OwgworiSDXsuVGtkyy5Vq2rFKGbjIxse7ZhN_m_0PfeUWDIw</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Karthik, A.</creator><creator>Arunmetha, S.</creator><creator>Srither, S. R.</creator><creator>Manivasakan, P.</creator><creator>Rajendran, V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications</title><author>Karthik, A. ; Arunmetha, S. ; Srither, S. R. ; Manivasakan, P. ; Rajendran, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-546f9b4f096021d54c2da620f02c5cfbf976b7477dc546628748bb1555d0d5853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum oxide</topic><topic>Atomic force microscopy</topic><topic>Austenitic stainless steels</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Composites</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Fillers</topic><topic>Formations</topic><topic>Glass</topic><topic>Gravimetric analysis</topic><topic>Heat resistant steels</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Multilayers</topic><topic>Nanoindentation</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Polyamide resins</topic><topic>Protective coatings</topic><topic>Scanning probe microscopy</topic><topic>Spray pyrolysis</topic><topic>Submerging</topic><topic>Sulfuric acid</topic><topic>Surface roughness</topic><topic>Surface stability</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karthik, A.</creatorcontrib><creatorcontrib>Arunmetha, S.</creatorcontrib><creatorcontrib>Srither, S. R.</creatorcontrib><creatorcontrib>Manivasakan, P.</creatorcontrib><creatorcontrib>Rajendran, V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karthik, A.</au><au>Arunmetha, S.</au><au>Srither, S. R.</au><au>Manivasakan, P.</au><au>Rajendran, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>74</volume><issue>2</issue><spage>460</spage><epage>471</epage><pages>460-471</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Amorphous alumina–zirconia (Al 2 O 3 –ZrO 2 ) nanoparticles were produced by hot-air spray pyrolysis method. Two and six layers of anticorrosive coating of epoxy polyamide (EP) resin and mixture of amorphous Al 2 O 3 –ZrO 2 nanoparticles in epoxy polyamide resin (NEP), respectively, were applied on SS 316L specimens. The performance of EP and NEP coated samples was comprehensively characterized. The results show that the sample with six layers of NEP coating (SSNEP6) has enhanced thermal, elastic properties and chemical resistance than that with six layers of EP coating (SSEP6). Thermo gravimetric analysis reveals that EP sample decomposed at 523 °C whereas NEP sample has extended thermal stability up to 750 °C with minimum residual mass. The thermal conductivity of EP sample is 0.124 while for NEP is about 0.263 W/mK. The hardness and reduced elastic modulus of SSNEP6 sample were, respectively, 318.32 MPa and 5.98 GPa whereas those of SSEP6 sample were 233.69 MPa and 4.17 GPa. Further, in-situ scanning probe microscopy (SPM)-nanoindentation and atomic force microscopy (AFM) images were obtained to explore the formation of Al 2 O 3 –ZrO 2 nano filler in EP matrix. The samples coated with multilayers of EP and NEP was exposed to acid immersion (10 % of H 2 SO 4 ) for 48 h. The SPM and AFM microstructure images show that the NEP coated sample maintains its original surface feature with existing passive layer formation, whereas EP coated sample shows surface deterioration and deformation. In addition, stability of EP and NEP coated samples was measured in terms of surface roughness with respect to nano filler in epoxy matrix. This observation shows that Al 2 O 3 –ZrO 2 nanofiller can be used to improve the desirable properties in host epoxy matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-015-3621-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2015-05, Vol.74 (2), p.460-471
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_miscellaneous_1730078127
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Atomic force microscopy
Austenitic stainless steels
Ceramics
Chemistry and Materials Science
Coating
Composites
Corrosion prevention
Corrosion resistance
Deformation
Elastic properties
Fillers
Formations
Glass
Gravimetric analysis
Heat resistant steels
Inorganic Chemistry
Materials Science
Microscopy
Modulus of elasticity
Multilayers
Nanoindentation
Nanoparticles
Nanostructure
Nanotechnology
Natural Materials
Optical and Electronic Materials
Organic chemistry
Original Paper
Polyamide resins
Protective coatings
Scanning probe microscopy
Spray pyrolysis
Submerging
Sulfuric acid
Surface roughness
Surface stability
Thermal conductivity
Thermal stability
Zirconium dioxide
title Nano alumina–zirconia blended epoxy polymeric composites for anticorrosive applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%20alumina%E2%80%93zirconia%20blended%20epoxy%20polymeric%20composites%20for%20anticorrosive%20applications&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Karthik,%20A.&rft.date=2015-05-01&rft.volume=74&rft.issue=2&rft.spage=460&rft.epage=471&rft.pages=460-471&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-015-3621-8&rft_dat=%3Cproquest_cross%3E1730078127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259531415&rft_id=info:pmid/&rfr_iscdi=true