An Effective Error Correction Scheme for Arithmetic Coding

We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-10
Hauptverfasser: Chen, Jianyong, Li, Ming, Wong, Kwok W., Lin, Qiuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Chen, Jianyong
Li, Ming
Wong, Kwok W.
Lin, Qiuzhen
description We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.
doi_str_mv 10.1155/2015/861093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730073354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730073354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVk3cJeBEldmc_som3UOoHFDyo4G1JNrN2S5PU3VTx35sQD-LF0wwvD8PwEnIK9BpAyhmjIGdpAjTje2QCMuGxBKH2-50yEQPjr4fkKIQ1pQwkpBNykzfRwlo0nfvAaOF966N56_0QtE30ZFZYY2T7NPeuW9XYOdODyjVvx-TAFpuAJz9zSl5uF8_z-3j5ePcwz5ex4UC7GIRJLS-NTBhgKZhMjKoM51gao0qlrAFVmIQyw5CiEGkmC0Y5xUpKqFLBp-RivLv17fsOQ6drFwxuNkWD7S5oUJxSxbkc6Pkfum53vum_05Bkqi8EkkFdjcr4NgSPVm-9qwv_pYHqoUc99KjHHnt9OeqVa6ri0_2Dz0aMPUFb_MJKZJDxb71CeWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697156164</pqid></control><display><type>article</type><title>An Effective Error Correction Scheme for Arithmetic Coding</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen</creator><contributor>Bakhoum, Ezzat G.</contributor><creatorcontrib>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen ; Bakhoum, Ezzat G.</creatorcontrib><description>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/861093</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Arithmetic coding ; Codes ; Computer simulation ; Decoding ; Efficiency ; Error correction ; Error correction &amp; detection ; Error detection ; Mathematical models ; Noise ; Performance prediction ; R&amp;D ; Research &amp; development ; Science ; Stack algorithm ; Stacks ; Symbols</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-10</ispartof><rights>Copyright © 2015 Qiuzhen Lin et al.</rights><rights>Copyright © 2015 Qiuzhen Lin et al. Qiuzhen Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</cites><orcidid>0000-0002-2725-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Bakhoum, Ezzat G.</contributor><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wong, Kwok W.</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><title>An Effective Error Correction Scheme for Arithmetic Coding</title><title>Mathematical problems in engineering</title><description>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</description><subject>Algorithms</subject><subject>Arithmetic coding</subject><subject>Codes</subject><subject>Computer simulation</subject><subject>Decoding</subject><subject>Efficiency</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Error detection</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Performance prediction</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Science</subject><subject>Stack algorithm</subject><subject>Stacks</subject><subject>Symbols</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVk3cJeBEldmc_som3UOoHFDyo4G1JNrN2S5PU3VTx35sQD-LF0wwvD8PwEnIK9BpAyhmjIGdpAjTje2QCMuGxBKH2-50yEQPjr4fkKIQ1pQwkpBNykzfRwlo0nfvAaOF966N56_0QtE30ZFZYY2T7NPeuW9XYOdODyjVvx-TAFpuAJz9zSl5uF8_z-3j5ePcwz5ex4UC7GIRJLS-NTBhgKZhMjKoM51gao0qlrAFVmIQyw5CiEGkmC0Y5xUpKqFLBp-RivLv17fsOQ6drFwxuNkWD7S5oUJxSxbkc6Pkfum53vum_05Bkqi8EkkFdjcr4NgSPVm-9qwv_pYHqoUc99KjHHnt9OeqVa6ri0_2Dz0aMPUFb_MJKZJDxb71CeWQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Chen, Jianyong</creator><creator>Li, Ming</creator><creator>Wong, Kwok W.</creator><creator>Lin, Qiuzhen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2725-353X</orcidid></search><sort><creationdate>20150101</creationdate><title>An Effective Error Correction Scheme for Arithmetic Coding</title><author>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arithmetic coding</topic><topic>Codes</topic><topic>Computer simulation</topic><topic>Decoding</topic><topic>Efficiency</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Error detection</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Performance prediction</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Science</topic><topic>Stack algorithm</topic><topic>Stacks</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wong, Kwok W.</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianyong</au><au>Li, Ming</au><au>Wong, Kwok W.</au><au>Lin, Qiuzhen</au><au>Bakhoum, Ezzat G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Error Correction Scheme for Arithmetic Coding</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/861093</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2725-353X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1730073354
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Arithmetic coding
Codes
Computer simulation
Decoding
Efficiency
Error correction
Error correction & detection
Error detection
Mathematical models
Noise
Performance prediction
R&D
Research & development
Science
Stack algorithm
Stacks
Symbols
title An Effective Error Correction Scheme for Arithmetic Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Error%20Correction%20Scheme%20for%20Arithmetic%20Coding&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Chen,%20Jianyong&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/861093&rft_dat=%3Cproquest_cross%3E1730073354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697156164&rft_id=info:pmid/&rfr_iscdi=true