An Effective Error Correction Scheme for Arithmetic Coding
We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalize...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2015 |
creator | Chen, Jianyong Li, Ming Wong, Kwok W. Lin, Qiuzhen |
description | We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate. |
doi_str_mv | 10.1155/2015/861093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730073354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730073354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVk3cJeBEldmc_som3UOoHFDyo4G1JNrN2S5PU3VTx35sQD-LF0wwvD8PwEnIK9BpAyhmjIGdpAjTje2QCMuGxBKH2-50yEQPjr4fkKIQ1pQwkpBNykzfRwlo0nfvAaOF966N56_0QtE30ZFZYY2T7NPeuW9XYOdODyjVvx-TAFpuAJz9zSl5uF8_z-3j5ePcwz5ex4UC7GIRJLS-NTBhgKZhMjKoM51gao0qlrAFVmIQyw5CiEGkmC0Y5xUpKqFLBp-RivLv17fsOQ6drFwxuNkWD7S5oUJxSxbkc6Pkfum53vum_05Bkqi8EkkFdjcr4NgSPVm-9qwv_pYHqoUc99KjHHnt9OeqVa6ri0_2Dz0aMPUFb_MJKZJDxb71CeWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697156164</pqid></control><display><type>article</type><title>An Effective Error Correction Scheme for Arithmetic Coding</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen</creator><contributor>Bakhoum, Ezzat G.</contributor><creatorcontrib>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen ; Bakhoum, Ezzat G.</creatorcontrib><description>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/861093</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Arithmetic coding ; Codes ; Computer simulation ; Decoding ; Efficiency ; Error correction ; Error correction & detection ; Error detection ; Mathematical models ; Noise ; Performance prediction ; R&D ; Research & development ; Science ; Stack algorithm ; Stacks ; Symbols</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-10</ispartof><rights>Copyright © 2015 Qiuzhen Lin et al.</rights><rights>Copyright © 2015 Qiuzhen Lin et al. Qiuzhen Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</cites><orcidid>0000-0002-2725-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Bakhoum, Ezzat G.</contributor><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wong, Kwok W.</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><title>An Effective Error Correction Scheme for Arithmetic Coding</title><title>Mathematical problems in engineering</title><description>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</description><subject>Algorithms</subject><subject>Arithmetic coding</subject><subject>Codes</subject><subject>Computer simulation</subject><subject>Decoding</subject><subject>Efficiency</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Error detection</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Performance prediction</subject><subject>R&D</subject><subject>Research & development</subject><subject>Science</subject><subject>Stack algorithm</subject><subject>Stacks</subject><subject>Symbols</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVk3cJeBEldmc_som3UOoHFDyo4G1JNrN2S5PU3VTx35sQD-LF0wwvD8PwEnIK9BpAyhmjIGdpAjTje2QCMuGxBKH2-50yEQPjr4fkKIQ1pQwkpBNykzfRwlo0nfvAaOF966N56_0QtE30ZFZYY2T7NPeuW9XYOdODyjVvx-TAFpuAJz9zSl5uF8_z-3j5ePcwz5ex4UC7GIRJLS-NTBhgKZhMjKoM51gao0qlrAFVmIQyw5CiEGkmC0Y5xUpKqFLBp-RivLv17fsOQ6drFwxuNkWD7S5oUJxSxbkc6Pkfum53vum_05Bkqi8EkkFdjcr4NgSPVm-9qwv_pYHqoUc99KjHHnt9OeqVa6ri0_2Dz0aMPUFb_MJKZJDxb71CeWQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Chen, Jianyong</creator><creator>Li, Ming</creator><creator>Wong, Kwok W.</creator><creator>Lin, Qiuzhen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2725-353X</orcidid></search><sort><creationdate>20150101</creationdate><title>An Effective Error Correction Scheme for Arithmetic Coding</title><author>Chen, Jianyong ; Li, Ming ; Wong, Kwok W. ; Lin, Qiuzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-14c8f3bc5621eb4256c7dc33ebcc7b77fc17ac602c2e0e44895a2030ed551d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arithmetic coding</topic><topic>Codes</topic><topic>Computer simulation</topic><topic>Decoding</topic><topic>Efficiency</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Error detection</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Performance prediction</topic><topic>R&D</topic><topic>Research & development</topic><topic>Science</topic><topic>Stack algorithm</topic><topic>Stacks</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wong, Kwok W.</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianyong</au><au>Li, Ming</au><au>Wong, Kwok W.</au><au>Lin, Qiuzhen</au><au>Bakhoum, Ezzat G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Error Correction Scheme for Arithmetic Coding</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We propose an effective error correction technique for arithmetic coding with forbidden symbol. By predicting the occurrence of the subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack. Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance, especially at a low coding rate.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/861093</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2725-353X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-10 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730073354 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Arithmetic coding Codes Computer simulation Decoding Efficiency Error correction Error correction & detection Error detection Mathematical models Noise Performance prediction R&D Research & development Science Stack algorithm Stacks Symbols |
title | An Effective Error Correction Scheme for Arithmetic Coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Error%20Correction%20Scheme%20for%20Arithmetic%20Coding&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Chen,%20Jianyong&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/861093&rft_dat=%3Cproquest_cross%3E1730073354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697156164&rft_id=info:pmid/&rfr_iscdi=true |