Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data
The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulation...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2012-01, Vol.33 (1), p.12102-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 12102 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 33 |
creator | Chen, Yun Nguyen-Thi, Henri Li, Dian Zhong Bogno, Abdoul-Aziz Billia, Bernard Xiao, Na Min |
description | The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified. |
doi_str_mv | 10.1088/1757-899X/33/1/012102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730071977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564234281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</originalsourceid><addsrcrecordid>eNpdkd9qFDEUhwdRsFYfQQh44824OcnsTMY7KVYLBW8UeheyyYmbkknW_Knsq_l0ZnZFSiGQkPOd74T8uu4t0A9AhdjAtJ16Mc93G843sKHAgLJn3cX_--ePzi-7VznfUzpOw0Avuj83wfqKQSOJlgRValKe6BgeUBcXA2lrcTrFXFLVrYoEH6Kvp5qpyYWfpOyRuOCKa505emecdVqdiJJUyA5D-dicy0Ell1enJYe9ythbh96QJRr0q-i3K_tmItmVSvIx6H2KJbWGuz6pY-PakHgaaVRRr7sXVvmMb_7tl92P68_fr772t9--3Fx9uu01H6H0Rgx2BDtb3O1AKaGHnbbagIBJMD4yjUA5G-2s6GxHvYOZGWW2aAQfxlkYftm9P3sPKf6qmItcXNbovQoYa5YwcUonmKepoe-eoPexptBeJ9l2HBgfmIBGbc_U-q05oZWH5BaVjhKoXBOVa1pyTUtyLkGeE-V_AVPNmuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564234281</pqid></control><display><type>article</type><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</creator><creatorcontrib>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</creatorcontrib><description>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</description><identifier>ISSN: 1757-899X</identifier><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/33/1/012102</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Aluminum base alloys ; Computational fluid dynamics ; Computer simulation ; Convection ; Copper ; Copper base alloys ; Directional solidification ; Domains ; Evolution ; Fluid flow ; Free convection ; Horizontal ; Mathematical models ; Monitoring ; Navier-Stokes equations ; Parameters ; Simulation ; Synchrotron radiation ; Synchrotrons ; Temperature gradient ; Two dimensional models</subject><ispartof>IOP conference series. Materials Science and Engineering, 2012-01, Vol.33 (1), p.12102-10</ispartof><rights>Copyright IOP Publishing Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</citedby><cites>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><title>IOP conference series. Materials Science and Engineering</title><description>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Directional solidification</subject><subject>Domains</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Horizontal</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Navier-Stokes equations</subject><subject>Parameters</subject><subject>Simulation</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Temperature gradient</subject><subject>Two dimensional models</subject><issn>1757-899X</issn><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9qFDEUhwdRsFYfQQh44824OcnsTMY7KVYLBW8UeheyyYmbkknW_Knsq_l0ZnZFSiGQkPOd74T8uu4t0A9AhdjAtJ16Mc93G843sKHAgLJn3cX_--ePzi-7VznfUzpOw0Avuj83wfqKQSOJlgRValKe6BgeUBcXA2lrcTrFXFLVrYoEH6Kvp5qpyYWfpOyRuOCKa505emecdVqdiJJUyA5D-dicy0Ell1enJYe9ythbh96QJRr0q-i3K_tmItmVSvIx6H2KJbWGuz6pY-PakHgaaVRRr7sXVvmMb_7tl92P68_fr772t9--3Fx9uu01H6H0Rgx2BDtb3O1AKaGHnbbagIBJMD4yjUA5G-2s6GxHvYOZGWW2aAQfxlkYftm9P3sPKf6qmItcXNbovQoYa5YwcUonmKepoe-eoPexptBeJ9l2HBgfmIBGbc_U-q05oZWH5BaVjhKoXBOVa1pyTUtyLkGeE-V_AVPNmuk</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chen, Yun</creator><creator>Nguyen-Thi, Henri</creator><creator>Li, Dian Zhong</creator><creator>Bogno, Abdoul-Aziz</creator><creator>Billia, Bernard</creator><creator>Xiao, Na Min</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20120101</creationdate><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><author>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Directional solidification</topic><topic>Domains</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Horizontal</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Navier-Stokes equations</topic><topic>Parameters</topic><topic>Simulation</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Temperature gradient</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yun</au><au>Nguyen-Thi, Henri</au><au>Li, Dian Zhong</au><au>Bogno, Abdoul-Aziz</au><au>Billia, Bernard</au><au>Xiao, Na Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>12102</spage><epage>10</epage><pages>12102-10</pages><issn>1757-899X</issn><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/33/1/012102</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-899X |
ispartof | IOP conference series. Materials Science and Engineering, 2012-01, Vol.33 (1), p.12102-10 |
issn | 1757-899X 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_miscellaneous_1730071977 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Aluminum Aluminum base alloys Computational fluid dynamics Computer simulation Convection Copper Copper base alloys Directional solidification Domains Evolution Fluid flow Free convection Horizontal Mathematical models Monitoring Navier-Stokes equations Parameters Simulation Synchrotron radiation Synchrotrons Temperature gradient Two dimensional models |
title | Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20natural%20convection%20on%20microstructure%20evolution%20during%20the%20initial%20solidification%20transient:%20comparison%20of%20phase-field%20modeling%20with%20in%20situ%20synchrotron%20X-ray%20monitoring%20data&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Chen,%20Yun&rft.date=2012-01-01&rft.volume=33&rft.issue=1&rft.spage=12102&rft.epage=10&rft.pages=12102-10&rft.issn=1757-899X&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/33/1/012102&rft_dat=%3Cproquest_cross%3E2564234281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564234281&rft_id=info:pmid/&rfr_iscdi=true |