Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data

The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2012-01, Vol.33 (1), p.12102-10
Hauptverfasser: Chen, Yun, Nguyen-Thi, Henri, Li, Dian Zhong, Bogno, Abdoul-Aziz, Billia, Bernard, Xiao, Na Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 12102
container_title IOP conference series. Materials Science and Engineering
container_volume 33
creator Chen, Yun
Nguyen-Thi, Henri
Li, Dian Zhong
Bogno, Abdoul-Aziz
Billia, Bernard
Xiao, Na Min
description The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.
doi_str_mv 10.1088/1757-899X/33/1/012102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730071977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564234281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</originalsourceid><addsrcrecordid>eNpdkd9qFDEUhwdRsFYfQQh44824OcnsTMY7KVYLBW8UeheyyYmbkknW_Knsq_l0ZnZFSiGQkPOd74T8uu4t0A9AhdjAtJ16Mc93G843sKHAgLJn3cX_--ePzi-7VznfUzpOw0Avuj83wfqKQSOJlgRValKe6BgeUBcXA2lrcTrFXFLVrYoEH6Kvp5qpyYWfpOyRuOCKa505emecdVqdiJJUyA5D-dicy0Ell1enJYe9ythbh96QJRr0q-i3K_tmItmVSvIx6H2KJbWGuz6pY-PakHgaaVRRr7sXVvmMb_7tl92P68_fr772t9--3Fx9uu01H6H0Rgx2BDtb3O1AKaGHnbbagIBJMD4yjUA5G-2s6GxHvYOZGWW2aAQfxlkYftm9P3sPKf6qmItcXNbovQoYa5YwcUonmKepoe-eoPexptBeJ9l2HBgfmIBGbc_U-q05oZWH5BaVjhKoXBOVa1pyTUtyLkGeE-V_AVPNmuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564234281</pqid></control><display><type>article</type><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</creator><creatorcontrib>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</creatorcontrib><description>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</description><identifier>ISSN: 1757-899X</identifier><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/33/1/012102</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Aluminum base alloys ; Computational fluid dynamics ; Computer simulation ; Convection ; Copper ; Copper base alloys ; Directional solidification ; Domains ; Evolution ; Fluid flow ; Free convection ; Horizontal ; Mathematical models ; Monitoring ; Navier-Stokes equations ; Parameters ; Simulation ; Synchrotron radiation ; Synchrotrons ; Temperature gradient ; Two dimensional models</subject><ispartof>IOP conference series. Materials Science and Engineering, 2012-01, Vol.33 (1), p.12102-10</ispartof><rights>Copyright IOP Publishing Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</citedby><cites>FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><title>IOP conference series. Materials Science and Engineering</title><description>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Directional solidification</subject><subject>Domains</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Horizontal</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Navier-Stokes equations</subject><subject>Parameters</subject><subject>Simulation</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Temperature gradient</subject><subject>Two dimensional models</subject><issn>1757-899X</issn><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9qFDEUhwdRsFYfQQh44824OcnsTMY7KVYLBW8UeheyyYmbkknW_Knsq_l0ZnZFSiGQkPOd74T8uu4t0A9AhdjAtJ16Mc93G843sKHAgLJn3cX_--ePzi-7VznfUzpOw0Avuj83wfqKQSOJlgRValKe6BgeUBcXA2lrcTrFXFLVrYoEH6Kvp5qpyYWfpOyRuOCKa505emecdVqdiJJUyA5D-dicy0Ell1enJYe9ythbh96QJRr0q-i3K_tmItmVSvIx6H2KJbWGuz6pY-PakHgaaVRRr7sXVvmMb_7tl92P68_fr772t9--3Fx9uu01H6H0Rgx2BDtb3O1AKaGHnbbagIBJMD4yjUA5G-2s6GxHvYOZGWW2aAQfxlkYftm9P3sPKf6qmItcXNbovQoYa5YwcUonmKepoe-eoPexptBeJ9l2HBgfmIBGbc_U-q05oZWH5BaVjhKoXBOVa1pyTUtyLkGeE-V_AVPNmuk</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chen, Yun</creator><creator>Nguyen-Thi, Henri</creator><creator>Li, Dian Zhong</creator><creator>Bogno, Abdoul-Aziz</creator><creator>Billia, Bernard</creator><creator>Xiao, Na Min</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20120101</creationdate><title>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</title><author>Chen, Yun ; Nguyen-Thi, Henri ; Li, Dian Zhong ; Bogno, Abdoul-Aziz ; Billia, Bernard ; Xiao, Na Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d84f61f9febb1aa8c4bcfcd181782362ce10326f9a09f6cb192dad5ed834698d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Directional solidification</topic><topic>Domains</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Horizontal</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Navier-Stokes equations</topic><topic>Parameters</topic><topic>Simulation</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Temperature gradient</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yun</au><au>Nguyen-Thi, Henri</au><au>Li, Dian Zhong</au><au>Bogno, Abdoul-Aziz</au><au>Billia, Bernard</au><au>Xiao, Na Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>12102</spage><epage>10</epage><pages>12102-10</pages><issn>1757-899X</issn><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/33/1/012102</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-899X
ispartof IOP conference series. Materials Science and Engineering, 2012-01, Vol.33 (1), p.12102-10
issn 1757-899X
1757-8981
1757-899X
language eng
recordid cdi_proquest_miscellaneous_1730071977
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aluminum
Aluminum base alloys
Computational fluid dynamics
Computer simulation
Convection
Copper
Copper base alloys
Directional solidification
Domains
Evolution
Fluid flow
Free convection
Horizontal
Mathematical models
Monitoring
Navier-Stokes equations
Parameters
Simulation
Synchrotron radiation
Synchrotrons
Temperature gradient
Two dimensional models
title Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20natural%20convection%20on%20microstructure%20evolution%20during%20the%20initial%20solidification%20transient:%20comparison%20of%20phase-field%20modeling%20with%20in%20situ%20synchrotron%20X-ray%20monitoring%20data&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Chen,%20Yun&rft.date=2012-01-01&rft.volume=33&rft.issue=1&rft.spage=12102&rft.epage=10&rft.pages=12102-10&rft.issn=1757-899X&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/33/1/012102&rft_dat=%3Cproquest_cross%3E2564234281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564234281&rft_id=info:pmid/&rfr_iscdi=true