Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator
This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by in...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1139 |
---|---|
container_issue | Engineering and Manufacturing Technologies |
container_start_page | 1132 |
container_title | Applied Mechanics and Materials |
container_volume | 541-542 |
creator | Choi, Hyeung Sik Ha, Ji Hoon Joo, Young Do Kim, Dong Hee |
description | This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints. |
doi_str_mv | 10.4028/www.scientific.net/AMM.541-542.1132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730068937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730068937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</originalsourceid><addsrcrecordid>eNqVkd1LLCEYh6VTUG39D0I3wWEmv3Uul-3jBC1BFF2K4zo1MauTui3732dng3PoJroQUR9_vq8PAL8xqhki6my9XtfJ9s7nvutt7V0-m87nNWe44ozUGFOyAw6wEKSSTJFf4LiRiiKqKEeck92_Z6hqKBX74DClF4QEw0wdgPm5S_2Th8Yv4Cz4HMMAQwcNfDTZxTGGsrgLbchwGpdwOo7DpvdPMD87eBXNW5835dpydD6ZHOIR2OvMkNzx5zwBD5cX97M_1c3t1fVselNZRmWunEO05S2S3IgGN4RatGibDret5YpTwSjjggnLu7JPJCNEtQtpuFLCMYwUnYDTbW4p8HXlUtbLPlk3DMa7sEoaS1o6VA2V36OcoIaX30EFPfmCvoRV9KWRQiHJBMWlugmYbSkbQ0rRdXqM_dLEjcZIf9jSxZb-Z0sXW7rY0sVWGUR_2CopF9uUHI1P2dnn_x77Qc47igOjRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507463185</pqid></control><display><type>article</type><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><source>Scientific.net Journals</source><creator>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</creator><creatorcontrib>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</creatorcontrib><description>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038350552</identifier><identifier>ISBN: 3038350559</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.541-542.1132</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Compensators ; Disturbances ; Dynamic tests ; Friction ; Gravitation ; Mathematical analysis ; Robots ; Target tracking</subject><ispartof>Applied Mechanics and Materials, 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</citedby><cites>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3072?width=600</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Choi, Hyeung Sik</creatorcontrib><creatorcontrib>Ha, Ji Hoon</creatorcontrib><creatorcontrib>Joo, Young Do</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><title>Applied Mechanics and Materials</title><description>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</description><subject>Compensators</subject><subject>Disturbances</subject><subject>Dynamic tests</subject><subject>Friction</subject><subject>Gravitation</subject><subject>Mathematical analysis</subject><subject>Robots</subject><subject>Target tracking</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038350552</isbn><isbn>3038350559</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkd1LLCEYh6VTUG39D0I3wWEmv3Uul-3jBC1BFF2K4zo1MauTui3732dng3PoJroQUR9_vq8PAL8xqhki6my9XtfJ9s7nvutt7V0-m87nNWe44ozUGFOyAw6wEKSSTJFf4LiRiiKqKEeck92_Z6hqKBX74DClF4QEw0wdgPm5S_2Th8Yv4Cz4HMMAQwcNfDTZxTGGsrgLbchwGpdwOo7DpvdPMD87eBXNW5835dpydD6ZHOIR2OvMkNzx5zwBD5cX97M_1c3t1fVselNZRmWunEO05S2S3IgGN4RatGibDret5YpTwSjjggnLu7JPJCNEtQtpuFLCMYwUnYDTbW4p8HXlUtbLPlk3DMa7sEoaS1o6VA2V36OcoIaX30EFPfmCvoRV9KWRQiHJBMWlugmYbSkbQ0rRdXqM_dLEjcZIf9jSxZb-Z0sXW7rY0sVWGUR_2CopF9uUHI1P2dnn_x77Qc47igOjRQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Choi, Hyeung Sik</creator><creator>Ha, Ji Hoon</creator><creator>Joo, Young Do</creator><creator>Kim, Dong Hee</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><author>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Compensators</topic><topic>Disturbances</topic><topic>Dynamic tests</topic><topic>Friction</topic><topic>Gravitation</topic><topic>Mathematical analysis</topic><topic>Robots</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Hyeung Sik</creatorcontrib><creatorcontrib>Ha, Ji Hoon</creatorcontrib><creatorcontrib>Joo, Young Do</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Hyeung Sik</au><au>Ha, Ji Hoon</au><au>Joo, Young Do</au><au>Kim, Dong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>541-542</volume><issue>Engineering and Manufacturing Technologies</issue><spage>1132</spage><epage>1139</epage><pages>1132-1139</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038350552</isbn><isbn>3038350559</isbn><abstract>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.541-542.1132</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730068937 |
source | Scientific.net Journals |
subjects | Compensators Disturbances Dynamic tests Friction Gravitation Mathematical analysis Robots Target tracking |
title | Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Control%20of%20a%20Waterproof%20Robot%20Arm%20Applying%20the%20Gravity%20Compensator&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Choi,%20Hyeung%20Sik&rft.date=2014-03-01&rft.volume=541-542&rft.issue=Engineering%20and%20Manufacturing%20Technologies&rft.spage=1132&rft.epage=1139&rft.pages=1132-1139&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038350552&rft.isbn_list=3038350559&rft_id=info:doi/10.4028/www.scientific.net/AMM.541-542.1132&rft_dat=%3Cproquest_cross%3E1730068937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507463185&rft_id=info:pmid/&rfr_iscdi=true |