Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator

This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139
Hauptverfasser: Choi, Hyeung Sik, Ha, Ji Hoon, Joo, Young Do, Kim, Dong Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1139
container_issue Engineering and Manufacturing Technologies
container_start_page 1132
container_title Applied Mechanics and Materials
container_volume 541-542
creator Choi, Hyeung Sik
Ha, Ji Hoon
Joo, Young Do
Kim, Dong Hee
description This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.
doi_str_mv 10.4028/www.scientific.net/AMM.541-542.1132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730068937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730068937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</originalsourceid><addsrcrecordid>eNqVkd1LLCEYh6VTUG39D0I3wWEmv3Uul-3jBC1BFF2K4zo1MauTui3732dng3PoJroQUR9_vq8PAL8xqhki6my9XtfJ9s7nvutt7V0-m87nNWe44ozUGFOyAw6wEKSSTJFf4LiRiiKqKEeck92_Z6hqKBX74DClF4QEw0wdgPm5S_2Th8Yv4Cz4HMMAQwcNfDTZxTGGsrgLbchwGpdwOo7DpvdPMD87eBXNW5835dpydD6ZHOIR2OvMkNzx5zwBD5cX97M_1c3t1fVselNZRmWunEO05S2S3IgGN4RatGibDret5YpTwSjjggnLu7JPJCNEtQtpuFLCMYwUnYDTbW4p8HXlUtbLPlk3DMa7sEoaS1o6VA2V36OcoIaX30EFPfmCvoRV9KWRQiHJBMWlugmYbSkbQ0rRdXqM_dLEjcZIf9jSxZb-Z0sXW7rY0sVWGUR_2CopF9uUHI1P2dnn_x77Qc47igOjRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507463185</pqid></control><display><type>article</type><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><source>Scientific.net Journals</source><creator>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</creator><creatorcontrib>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</creatorcontrib><description>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038350552</identifier><identifier>ISBN: 3038350559</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.541-542.1132</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Compensators ; Disturbances ; Dynamic tests ; Friction ; Gravitation ; Mathematical analysis ; Robots ; Target tracking</subject><ispartof>Applied Mechanics and Materials, 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</citedby><cites>FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3072?width=600</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Choi, Hyeung Sik</creatorcontrib><creatorcontrib>Ha, Ji Hoon</creatorcontrib><creatorcontrib>Joo, Young Do</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><title>Applied Mechanics and Materials</title><description>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</description><subject>Compensators</subject><subject>Disturbances</subject><subject>Dynamic tests</subject><subject>Friction</subject><subject>Gravitation</subject><subject>Mathematical analysis</subject><subject>Robots</subject><subject>Target tracking</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038350552</isbn><isbn>3038350559</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkd1LLCEYh6VTUG39D0I3wWEmv3Uul-3jBC1BFF2K4zo1MauTui3732dng3PoJroQUR9_vq8PAL8xqhki6my9XtfJ9s7nvutt7V0-m87nNWe44ozUGFOyAw6wEKSSTJFf4LiRiiKqKEeck92_Z6hqKBX74DClF4QEw0wdgPm5S_2Th8Yv4Cz4HMMAQwcNfDTZxTGGsrgLbchwGpdwOo7DpvdPMD87eBXNW5835dpydD6ZHOIR2OvMkNzx5zwBD5cX97M_1c3t1fVselNZRmWunEO05S2S3IgGN4RatGibDret5YpTwSjjggnLu7JPJCNEtQtpuFLCMYwUnYDTbW4p8HXlUtbLPlk3DMa7sEoaS1o6VA2V36OcoIaX30EFPfmCvoRV9KWRQiHJBMWlugmYbSkbQ0rRdXqM_dLEjcZIf9jSxZb-Z0sXW7rY0sVWGUR_2CopF9uUHI1P2dnn_x77Qc47igOjRQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Choi, Hyeung Sik</creator><creator>Ha, Ji Hoon</creator><creator>Joo, Young Do</creator><creator>Kim, Dong Hee</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</title><author>Choi, Hyeung Sik ; Ha, Ji Hoon ; Joo, Young Do ; Kim, Dong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ee03b5b075a691923c0db9f1bbc585364345646c5f0db274228bd7a5886e41083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Compensators</topic><topic>Disturbances</topic><topic>Dynamic tests</topic><topic>Friction</topic><topic>Gravitation</topic><topic>Mathematical analysis</topic><topic>Robots</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Hyeung Sik</creatorcontrib><creatorcontrib>Ha, Ji Hoon</creatorcontrib><creatorcontrib>Joo, Young Do</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Hyeung Sik</au><au>Ha, Ji Hoon</au><au>Joo, Young Do</au><au>Kim, Dong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>541-542</volume><issue>Engineering and Manufacturing Technologies</issue><spage>1132</spage><epage>1139</epage><pages>1132-1139</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038350552</isbn><isbn>3038350559</isbn><abstract>This study is about the design and control of waterproof 4-axis robot arm that allows underwater operation. To enhance the load capacity of the robot arm, a module-type gravity compensator (GC) is designed and applied to each joint. The dynamic equation of the robot arm was set up and analyzed by including frictional force of waterproof apparatus and compensating force of the GC. A SMC was designed and its performance was tested through simulation to track a target trajectory despite disturbance such as friction in joints.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.541-542.1132</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-03, Vol.541-542 (Engineering and Manufacturing Technologies), p.1132-1139
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1730068937
source Scientific.net Journals
subjects Compensators
Disturbances
Dynamic tests
Friction
Gravitation
Mathematical analysis
Robots
Target tracking
title Design and Control of a Waterproof Robot Arm Applying the Gravity Compensator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Control%20of%20a%20Waterproof%20Robot%20Arm%20Applying%20the%20Gravity%20Compensator&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Choi,%20Hyeung%20Sik&rft.date=2014-03-01&rft.volume=541-542&rft.issue=Engineering%20and%20Manufacturing%20Technologies&rft.spage=1132&rft.epage=1139&rft.pages=1132-1139&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038350552&rft.isbn_list=3038350559&rft_id=info:doi/10.4028/www.scientific.net/AMM.541-542.1132&rft_dat=%3Cproquest_cross%3E1730068937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507463185&rft_id=info:pmid/&rfr_iscdi=true