A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data

In this study, we propose an energy-based method to extract the nanomechanical properties such as indentation modulus and hardness for cementitious materials within the framework of contact mechanics that relies on more accurate and realistic interpretation of the load–displacement data. Such interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and structures 2015-09, Vol.48 (9), p.2915-2927
Hauptverfasser: Jha, Kaushal K., Suksawang, Nakin, Lahiri, Debrupa, Agarwal, Arvind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2927
container_issue 9
container_start_page 2915
container_title Materials and structures
container_volume 48
creator Jha, Kaushal K.
Suksawang, Nakin
Lahiri, Debrupa
Agarwal, Arvind
description In this study, we propose an energy-based method to extract the nanomechanical properties such as indentation modulus and hardness for cementitious materials within the framework of contact mechanics that relies on more accurate and realistic interpretation of the load–displacement data. Such interpretation allows us to evaluate both the initial unloading stiffness and the hardness—two main input parameters for the Sneddon’s solution to indentation of an elastic half-space—directly as the functions of indentation works. Specifically, we show that while the initial unloading stiffness may be expressed in terms of normalized elastic work, the hardness may be evaluated from the total work done using the modified work-of-indentation approach. Results from nanoindentation on hardened cement paste show that the proposed energy-based method provides the indentation modulus and the hardness in agreement with the Oliver and Pharr method for all the nanomechanical phases of the paste considered. Two main advantages associated with the proposed method include: it circumvents the need of fitting the unloading response by a power-law and computing the area of contact between indenter and specimen. As the method described herein is simple and easy to use, it could be employed as a potential alternative to the conventional Oliver and Pharr method for a heterogeneous material like cement paste.
doi_str_mv 10.1617/s11527-014-0367-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730068160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730068160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-df711087ecf4b7f254e912103635103c5f1ef557504926533af8dffc353ae8be3</originalsourceid><addsrcrecordid>eNp1kc1KxDAURosoqKMP4C7gxk00t2maZiniHwhudB0yzc1MpU3GpBXc-QiCb-iTGKkLEdwkgZzzcS9fURwBO4Ua5FkCEKWkDCrKeC2p3Cr2oJFA60by7fzmQlGhlNwt9lN6YowrgHKveD8nPrxgT9BjXL3SpUloyYDjOlgyBoIvpp_MiKTzFv1oxi54MgQ79VMixluyNtF6TIkER1ocMtNlJn8O2Yqd6RNxMQzEGx9-Z_TB2M-3D9ulTW9mkVgzmoNix2UJD3_uRfF4dflwcUPv7q9vL87vaMsrNVLrJABrJLauWkpXigoVlJB35yKfrXCATggpWKXKWnBuXGOda7ngBpsl8kVxMuduYnieMI166FKLfW885vE1SM5Y3UDNMnr8B30KU_R5Og21UoJlsM4UzFQbQ0oRnd7EbjDxVQPT3x3puSOdO9LfHWmZnXJ2Umb9CuOv5H-lL8TTl_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699500066</pqid></control><display><type>article</type><title>A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jha, Kaushal K. ; Suksawang, Nakin ; Lahiri, Debrupa ; Agarwal, Arvind</creator><creatorcontrib>Jha, Kaushal K. ; Suksawang, Nakin ; Lahiri, Debrupa ; Agarwal, Arvind</creatorcontrib><description>In this study, we propose an energy-based method to extract the nanomechanical properties such as indentation modulus and hardness for cementitious materials within the framework of contact mechanics that relies on more accurate and realistic interpretation of the load–displacement data. Such interpretation allows us to evaluate both the initial unloading stiffness and the hardness—two main input parameters for the Sneddon’s solution to indentation of an elastic half-space—directly as the functions of indentation works. Specifically, we show that while the initial unloading stiffness may be expressed in terms of normalized elastic work, the hardness may be evaluated from the total work done using the modified work-of-indentation approach. Results from nanoindentation on hardened cement paste show that the proposed energy-based method provides the indentation modulus and the hardness in agreement with the Oliver and Pharr method for all the nanomechanical phases of the paste considered. Two main advantages associated with the proposed method include: it circumvents the need of fitting the unloading response by a power-law and computing the area of contact between indenter and specimen. As the method described herein is simple and easy to use, it could be employed as a potential alternative to the conventional Oliver and Pharr method for a heterogeneous material like cement paste.</description><identifier>ISSN: 1359-5997</identifier><identifier>EISSN: 1871-6873</identifier><identifier>DOI: 10.1617/s11527-014-0367-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Building construction ; Building Materials ; Cements ; Civil Engineering ; Contact ; Engineering ; Hardness ; Indentation ; Machines ; Manufacturing ; Materials Science ; Mathematical models ; Nanoindentation ; Nanostructure ; Original Article ; Pastes ; Processes ; Solid Mechanics ; Theoretical and Applied Mechanics</subject><ispartof>Materials and structures, 2015-09, Vol.48 (9), p.2915-2927</ispartof><rights>RILEM 2014</rights><rights>RILEM 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-df711087ecf4b7f254e912103635103c5f1ef557504926533af8dffc353ae8be3</citedby><cites>FETCH-LOGICAL-c349t-df711087ecf4b7f254e912103635103c5f1ef557504926533af8dffc353ae8be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1617/s11527-014-0367-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1617/s11527-014-0367-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jha, Kaushal K.</creatorcontrib><creatorcontrib>Suksawang, Nakin</creatorcontrib><creatorcontrib>Lahiri, Debrupa</creatorcontrib><creatorcontrib>Agarwal, Arvind</creatorcontrib><title>A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data</title><title>Materials and structures</title><addtitle>Mater Struct</addtitle><description>In this study, we propose an energy-based method to extract the nanomechanical properties such as indentation modulus and hardness for cementitious materials within the framework of contact mechanics that relies on more accurate and realistic interpretation of the load–displacement data. Such interpretation allows us to evaluate both the initial unloading stiffness and the hardness—two main input parameters for the Sneddon’s solution to indentation of an elastic half-space—directly as the functions of indentation works. Specifically, we show that while the initial unloading stiffness may be expressed in terms of normalized elastic work, the hardness may be evaluated from the total work done using the modified work-of-indentation approach. Results from nanoindentation on hardened cement paste show that the proposed energy-based method provides the indentation modulus and the hardness in agreement with the Oliver and Pharr method for all the nanomechanical phases of the paste considered. Two main advantages associated with the proposed method include: it circumvents the need of fitting the unloading response by a power-law and computing the area of contact between indenter and specimen. As the method described herein is simple and easy to use, it could be employed as a potential alternative to the conventional Oliver and Pharr method for a heterogeneous material like cement paste.</description><subject>Building construction</subject><subject>Building Materials</subject><subject>Cements</subject><subject>Civil Engineering</subject><subject>Contact</subject><subject>Engineering</subject><subject>Hardness</subject><subject>Indentation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Original Article</subject><subject>Pastes</subject><subject>Processes</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><issn>1359-5997</issn><issn>1871-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc1KxDAURosoqKMP4C7gxk00t2maZiniHwhudB0yzc1MpU3GpBXc-QiCb-iTGKkLEdwkgZzzcS9fURwBO4Ua5FkCEKWkDCrKeC2p3Cr2oJFA60by7fzmQlGhlNwt9lN6YowrgHKveD8nPrxgT9BjXL3SpUloyYDjOlgyBoIvpp_MiKTzFv1oxi54MgQ79VMixluyNtF6TIkER1ocMtNlJn8O2Yqd6RNxMQzEGx9-Z_TB2M-3D9ulTW9mkVgzmoNix2UJD3_uRfF4dflwcUPv7q9vL87vaMsrNVLrJABrJLauWkpXigoVlJB35yKfrXCATggpWKXKWnBuXGOda7ngBpsl8kVxMuduYnieMI166FKLfW885vE1SM5Y3UDNMnr8B30KU_R5Og21UoJlsM4UzFQbQ0oRnd7EbjDxVQPT3x3puSOdO9LfHWmZnXJ2Umb9CuOv5H-lL8TTl_g</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Jha, Kaushal K.</creator><creator>Suksawang, Nakin</creator><creator>Lahiri, Debrupa</creator><creator>Agarwal, Arvind</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150901</creationdate><title>A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data</title><author>Jha, Kaushal K. ; Suksawang, Nakin ; Lahiri, Debrupa ; Agarwal, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-df711087ecf4b7f254e912103635103c5f1ef557504926533af8dffc353ae8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Building construction</topic><topic>Building Materials</topic><topic>Cements</topic><topic>Civil Engineering</topic><topic>Contact</topic><topic>Engineering</topic><topic>Hardness</topic><topic>Indentation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Original Article</topic><topic>Pastes</topic><topic>Processes</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Kaushal K.</creatorcontrib><creatorcontrib>Suksawang, Nakin</creatorcontrib><creatorcontrib>Lahiri, Debrupa</creatorcontrib><creatorcontrib>Agarwal, Arvind</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Kaushal K.</au><au>Suksawang, Nakin</au><au>Lahiri, Debrupa</au><au>Agarwal, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data</atitle><jtitle>Materials and structures</jtitle><stitle>Mater Struct</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>48</volume><issue>9</issue><spage>2915</spage><epage>2927</epage><pages>2915-2927</pages><issn>1359-5997</issn><eissn>1871-6873</eissn><abstract>In this study, we propose an energy-based method to extract the nanomechanical properties such as indentation modulus and hardness for cementitious materials within the framework of contact mechanics that relies on more accurate and realistic interpretation of the load–displacement data. Such interpretation allows us to evaluate both the initial unloading stiffness and the hardness—two main input parameters for the Sneddon’s solution to indentation of an elastic half-space—directly as the functions of indentation works. Specifically, we show that while the initial unloading stiffness may be expressed in terms of normalized elastic work, the hardness may be evaluated from the total work done using the modified work-of-indentation approach. Results from nanoindentation on hardened cement paste show that the proposed energy-based method provides the indentation modulus and the hardness in agreement with the Oliver and Pharr method for all the nanomechanical phases of the paste considered. Two main advantages associated with the proposed method include: it circumvents the need of fitting the unloading response by a power-law and computing the area of contact between indenter and specimen. As the method described herein is simple and easy to use, it could be employed as a potential alternative to the conventional Oliver and Pharr method for a heterogeneous material like cement paste.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1617/s11527-014-0367-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-5997
ispartof Materials and structures, 2015-09, Vol.48 (9), p.2915-2927
issn 1359-5997
1871-6873
language eng
recordid cdi_proquest_miscellaneous_1730068160
source SpringerLink Journals - AutoHoldings
subjects Building construction
Building Materials
Cements
Civil Engineering
Contact
Engineering
Hardness
Indentation
Machines
Manufacturing
Materials Science
Mathematical models
Nanoindentation
Nanostructure
Original Article
Pastes
Processes
Solid Mechanics
Theoretical and Applied Mechanics
title A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20energy-based%20method%20to%20evaluate%20indentation%20modulus%20and%20hardness%20of%20cementitious%20materials%20from%20nanoindentation%20load%E2%80%93displacement%20data&rft.jtitle=Materials%20and%20structures&rft.au=Jha,%20Kaushal%20K.&rft.date=2015-09-01&rft.volume=48&rft.issue=9&rft.spage=2915&rft.epage=2927&rft.pages=2915-2927&rft.issn=1359-5997&rft.eissn=1871-6873&rft_id=info:doi/10.1617/s11527-014-0367-7&rft_dat=%3Cproquest_cross%3E1730068160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699500066&rft_id=info:pmid/&rfr_iscdi=true