Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square

Let be a nonsingular quadratic form with integer coefficients, n  be even. Let V = V Q = V p 2 denote the set of zeros of Q ( x ) in Z p 2 , p be an odd prime, and | V | denote the cardinality of V . In this paper, we are interested in giving an upper bound of the number of integer solutions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2014-08, Vol.2014 (1), p.1-11, Article 290
1. Verfasser: Hakami, Ali H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Journal of inequalities and applications
container_volume 2014
creator Hakami, Ali H
description Let be a nonsingular quadratic form with integer coefficients, n  be even. Let V = V Q = V p 2 denote the set of zeros of Q ( x ) in Z p 2 , p be an odd prime, and | V | denote the cardinality of V . In this paper, we are interested in giving an upper bound of the number of integer solutions of the congruence Q ( x ) ≡ 0 ( mod p 2 ) in small boxes of the type { x ∈ Z p 2 n | a i ⩽ x i < a i + m i , 1 ⩽ i ⩽ n } centered about the origin, where a i , m i ∈ Z , and 0 < m i < p 2 for 1 ⩽ i ⩽ n . MSC: 11E04, 11E08, 11E12, 11P21.
doi_str_mv 10.1186/1029-242X-2014-290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730065729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3823315201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e760610a65b9a459bb3eefa9603a2e4ed2dc54dd2f4aa51a83e190eef2e251de3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8v4Crgxs1obnNbSqkXKLhRcBdOZ05qysykTTKIb2-GihTBVcI53_-TfIRccXbLeVXccSbqTCjxngnGVSZqdkRmv8Pjg_spOQthw5jgslIzsl6EaHuIGKhxnnYQo22Qbp0dYqDO0N0IrYc0nPZ9oJ82ftC0xLWHjjYOjbGNxYnuXTt2jgLdetsjHcZ-hZ6G1ODxgpwY6AJe_pzn5O1h8Tp_ypYvj8_z-2XWSFXGDMuCFZxBka9qUHm9WklEA3XBJAhU2Iq2yVXbCqMAcg6VRF6zhAgUOW9RnpObfe_Wu92IIerehga7DgZ0Y9C8lIwVeSnqhF7_QTdu9EN6XaJ4xXnBqjJRYk813oXg0ejpd-C_NGd6cq8ntXpSqyf3OrlPIbkPhQQPa_QH1f-nvgF6S4im</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718116087</pqid></control><display><type>article</type><title>Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hakami, Ali H</creator><creatorcontrib>Hakami, Ali H</creatorcontrib><description>Let be a nonsingular quadratic form with integer coefficients, n  be even. Let V = V Q = V p 2 denote the set of zeros of Q ( x ) in Z p 2 , p be an odd prime, and | V | denote the cardinality of V . In this paper, we are interested in giving an upper bound of the number of integer solutions of the congruence Q ( x ) ≡ 0 ( mod p 2 ) in small boxes of the type { x ∈ Z p 2 n | a i ⩽ x i &lt; a i + m i , 1 ⩽ i ⩽ n } centered about the origin, where a i , m i ∈ Z , and 0 &lt; m i &lt; p 2 for 1 ⩽ i ⩽ n . MSC: 11E04, 11E08, 11E12, 11P21.</description><identifier>ISSN: 1029-242X</identifier><identifier>ISSN: 1025-5834</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/1029-242X-2014-290</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Applications of Mathematics ; Estimates ; Inequalities ; Integers ; Lattices ; Mathematics ; Mathematics and Statistics ; Origins ; Prime numbers ; Quadratic forms ; Upper bounds</subject><ispartof>Journal of inequalities and applications, 2014-08, Vol.2014 (1), p.1-11, Article 290</ispartof><rights>Hakami; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-e760610a65b9a459bb3eefa9603a2e4ed2dc54dd2f4aa51a83e190eef2e251de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/1029-242X-2014-290$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/1029-242X-2014-290$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Hakami, Ali H</creatorcontrib><title>Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square</title><title>Journal of inequalities and applications</title><addtitle>J Inequal Appl</addtitle><description>Let be a nonsingular quadratic form with integer coefficients, n  be even. Let V = V Q = V p 2 denote the set of zeros of Q ( x ) in Z p 2 , p be an odd prime, and | V | denote the cardinality of V . In this paper, we are interested in giving an upper bound of the number of integer solutions of the congruence Q ( x ) ≡ 0 ( mod p 2 ) in small boxes of the type { x ∈ Z p 2 n | a i ⩽ x i &lt; a i + m i , 1 ⩽ i ⩽ n } centered about the origin, where a i , m i ∈ Z , and 0 &lt; m i &lt; p 2 for 1 ⩽ i ⩽ n . MSC: 11E04, 11E08, 11E12, 11P21.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Integers</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Origins</subject><subject>Prime numbers</subject><subject>Quadratic forms</subject><subject>Upper bounds</subject><issn>1029-242X</issn><issn>1025-5834</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEUhoMoWC8v4Crgxs1obnNbSqkXKLhRcBdOZ05qysykTTKIb2-GihTBVcI53_-TfIRccXbLeVXccSbqTCjxngnGVSZqdkRmv8Pjg_spOQthw5jgslIzsl6EaHuIGKhxnnYQo22Qbp0dYqDO0N0IrYc0nPZ9oJ82ftC0xLWHjjYOjbGNxYnuXTt2jgLdetsjHcZ-hZ6G1ODxgpwY6AJe_pzn5O1h8Tp_ypYvj8_z-2XWSFXGDMuCFZxBka9qUHm9WklEA3XBJAhU2Iq2yVXbCqMAcg6VRF6zhAgUOW9RnpObfe_Wu92IIerehga7DgZ0Y9C8lIwVeSnqhF7_QTdu9EN6XaJ4xXnBqjJRYk813oXg0ejpd-C_NGd6cq8ntXpSqyf3OrlPIbkPhQQPa_QH1f-nvgF6S4im</recordid><startdate>20140818</startdate><enddate>20140818</enddate><creator>Hakami, Ali H</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140818</creationdate><title>Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square</title><author>Hakami, Ali H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e760610a65b9a459bb3eefa9603a2e4ed2dc54dd2f4aa51a83e190eef2e251de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Integers</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Origins</topic><topic>Prime numbers</topic><topic>Quadratic forms</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakami, Ali H</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakami, Ali H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square</atitle><jtitle>Journal of inequalities and applications</jtitle><stitle>J Inequal Appl</stitle><date>2014-08-18</date><risdate>2014</risdate><volume>2014</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>290</artnum><issn>1029-242X</issn><issn>1025-5834</issn><eissn>1029-242X</eissn><abstract>Let be a nonsingular quadratic form with integer coefficients, n  be even. Let V = V Q = V p 2 denote the set of zeros of Q ( x ) in Z p 2 , p be an odd prime, and | V | denote the cardinality of V . In this paper, we are interested in giving an upper bound of the number of integer solutions of the congruence Q ( x ) ≡ 0 ( mod p 2 ) in small boxes of the type { x ∈ Z p 2 n | a i ⩽ x i &lt; a i + m i , 1 ⩽ i ⩽ n } centered about the origin, where a i , m i ∈ Z , and 0 &lt; m i &lt; p 2 for 1 ⩽ i ⩽ n . MSC: 11E04, 11E08, 11E12, 11P21.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/1029-242X-2014-290</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-242X
ispartof Journal of inequalities and applications, 2014-08, Vol.2014 (1), p.1-11, Article 290
issn 1029-242X
1025-5834
1029-242X
language eng
recordid cdi_proquest_miscellaneous_1730065729
source DOAJ Directory of Open Access Journals; SpringerNature Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Applications of Mathematics
Estimates
Inequalities
Integers
Lattices
Mathematics
Mathematics and Statistics
Origins
Prime numbers
Quadratic forms
Upper bounds
title Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20lattice%20points%20of%20quadratic%20forms%20with%20integral%20coefficients%20modulo%20a%20prime%20number%20square&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Hakami,%20Ali%20H&rft.date=2014-08-18&rft.volume=2014&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=290&rft.issn=1029-242X&rft.eissn=1029-242X&rft_id=info:doi/10.1186/1029-242X-2014-290&rft_dat=%3Cproquest_cross%3E3823315201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718116087&rft_id=info:pmid/&rfr_iscdi=true