Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure

The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2011-01, Vol.305 (1), p.12118-11
Hauptverfasser: Ross, C T F, Kubelt, C, McLaughlin, I, Etheridge, A, Turner, K, Paraskevaides, D, Little, A P F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 12118
container_title Journal of physics. Conference series
container_volume 305
creator Ross, C T F
Kubelt, C
McLaughlin, I
Etheridge, A
Turner, K
Paraskevaides, D
Little, A P F
description The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material & geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 & ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.
doi_str_mv 10.1088/1742-6596/305/1/012118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730064229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579416098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e161a4f0758f1323ce1909975ba2244f29b3baa0c6c904876d77c419f93003563</originalsourceid><addsrcrecordid>eNpdkE1PAyEQhonRxFr9C2YTL17WZYCF5Wgav5JGL3omLAstzZatsJvYfy9NjTFyGcI8M-F9ELoGfAe4aSoQjJS8lryiuK6gwkAAmhM0-22c_rmfo4uUNhjTfMQMmdchlL0PVsdiZYONui98SKNufe_HfTG4IvqwKtPoncv9rjBD8CZTaW37PhVT6Gws7NdoY8iv630Xhzw-elPsok1pivYSnTndJ3v1U-fo4_HhffFcLt-eXhb3y9JQzsbSAgfNHBZ144ASaixILKWoW00IY47IlrZaY8ONxKwRvBPCMJBO0hyn5nSObo97d3H4nGwa1dYnk3-pgx2mpEBkkDNCZEZv_qGbYToESIrUQjLgWDaZ4kfK5EwpWqd20W913CvA6uBeHbSqg1aV3StQR_f0G_Y1d0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579416098</pqid></control><display><type>article</type><title>Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ross, C T F ; Kubelt, C ; McLaughlin, I ; Etheridge, A ; Turner, K ; Paraskevaides, D ; Little, A P F</creator><creatorcontrib>Ross, C T F ; Kubelt, C ; McLaughlin, I ; Etheridge, A ; Turner, K ; Paraskevaides, D ; Little, A P F</creatorcontrib><description>The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material &amp; geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 &amp; ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/305/1/012118</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Buckling ; Collapse ; Conical shells ; Displays ; External pressure ; Hydrostatic pressure ; Instability ; Nonlinearity ; Physics ; Stability ; Stability analysis ; Universities</subject><ispartof>Journal of physics. Conference series, 2011-01, Vol.305 (1), p.12118-11</ispartof><rights>Copyright IOP Publishing Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e161a4f0758f1323ce1909975ba2244f29b3baa0c6c904876d77c419f93003563</citedby><cites>FETCH-LOGICAL-c364t-e161a4f0758f1323ce1909975ba2244f29b3baa0c6c904876d77c419f93003563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ross, C T F</creatorcontrib><creatorcontrib>Kubelt, C</creatorcontrib><creatorcontrib>McLaughlin, I</creatorcontrib><creatorcontrib>Etheridge, A</creatorcontrib><creatorcontrib>Turner, K</creatorcontrib><creatorcontrib>Paraskevaides, D</creatorcontrib><creatorcontrib>Little, A P F</creatorcontrib><title>Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure</title><title>Journal of physics. Conference series</title><description>The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material &amp; geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 &amp; ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.</description><subject>Buckling</subject><subject>Collapse</subject><subject>Conical shells</subject><subject>Displays</subject><subject>External pressure</subject><subject>Hydrostatic pressure</subject><subject>Instability</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Universities</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1PAyEQhonRxFr9C2YTL17WZYCF5Wgav5JGL3omLAstzZatsJvYfy9NjTFyGcI8M-F9ELoGfAe4aSoQjJS8lryiuK6gwkAAmhM0-22c_rmfo4uUNhjTfMQMmdchlL0PVsdiZYONui98SKNufe_HfTG4IvqwKtPoncv9rjBD8CZTaW37PhVT6Gws7NdoY8iv630Xhzw-elPsok1pivYSnTndJ3v1U-fo4_HhffFcLt-eXhb3y9JQzsbSAgfNHBZ144ASaixILKWoW00IY47IlrZaY8ONxKwRvBPCMJBO0hyn5nSObo97d3H4nGwa1dYnk3-pgx2mpEBkkDNCZEZv_qGbYToESIrUQjLgWDaZ4kfK5EwpWqd20W913CvA6uBeHbSqg1aV3StQR_f0G_Y1d0k</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Ross, C T F</creator><creator>Kubelt, C</creator><creator>McLaughlin, I</creator><creator>Etheridge, A</creator><creator>Turner, K</creator><creator>Paraskevaides, D</creator><creator>Little, A P F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20110101</creationdate><title>Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure</title><author>Ross, C T F ; Kubelt, C ; McLaughlin, I ; Etheridge, A ; Turner, K ; Paraskevaides, D ; Little, A P F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e161a4f0758f1323ce1909975ba2244f29b3baa0c6c904876d77c419f93003563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Buckling</topic><topic>Collapse</topic><topic>Conical shells</topic><topic>Displays</topic><topic>External pressure</topic><topic>Hydrostatic pressure</topic><topic>Instability</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Universities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, C T F</creatorcontrib><creatorcontrib>Kubelt, C</creatorcontrib><creatorcontrib>McLaughlin, I</creatorcontrib><creatorcontrib>Etheridge, A</creatorcontrib><creatorcontrib>Turner, K</creatorcontrib><creatorcontrib>Paraskevaides, D</creatorcontrib><creatorcontrib>Little, A P F</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, C T F</au><au>Kubelt, C</au><au>McLaughlin, I</au><au>Etheridge, A</au><au>Turner, K</au><au>Paraskevaides, D</au><au>Little, A P F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>305</volume><issue>1</issue><spage>12118</spage><epage>11</epage><pages>12118-11</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material &amp; geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 &amp; ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/305/1/012118</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2011-01, Vol.305 (1), p.12118-11
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1730064229
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Buckling
Collapse
Conical shells
Displays
External pressure
Hydrostatic pressure
Instability
Nonlinearity
Physics
Stability
Stability analysis
Universities
title Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20general%20instability%20of%20ring-stiffened%20conical%20shells%20under%20external%20hydrostatic%20pressure&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ross,%20C%20T%20F&rft.date=2011-01-01&rft.volume=305&rft.issue=1&rft.spage=12118&rft.epage=11&rft.pages=12118-11&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/305/1/012118&rft_dat=%3Cproquest_cross%3E2579416098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579416098&rft_id=info:pmid/&rfr_iscdi=true