FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING

This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of applied sciences 2014-01, Vol.11 (3), p.362-362
Hauptverfasser: Chandrika, V S, Jeyakumar, A Ebenezer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 3
container_start_page 362
container_title American journal of applied sciences
container_volume 11
creator Chandrika, V S
Jeyakumar, A Ebenezer
description This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.
doi_str_mv 10.3844/ajassp.2014.362.370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730060972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559722366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqXwC1g8siT4K3Y9RolbItJESpx2tNLEkVpaWmI68O9xVXamu5Oe9066B4BnjEI6Y-y13bXOnUKCMAspJyEV6AZMcBSxgHKGby8944EkVN6DB-d2CHlM4An4mMdNrmGqtEp0VhYwK2C9znTyplJYqbxJdFwkCi5LXVYwrbKVqmFTZ8UCplmdVD4H1_FK5UpDXcVFPS-rJYyLFL4HS-VnmORNrVXlE4_gbmj3zj791Slo5spfCvJykSVxHnRERCiIpMR009uOczIgKyxGfc8RJpwKKTcRi9ph6BnGlIiZnAnRd8MGC0sEkgNrKZ2Cl-ve03j8Olv3bQ5b19n9vv20x7MzWFCEOJKC_I9GkccI5dyj9Ip249G50Q7mNG4P7fhjMDIXC-ZqwVwsGP9e4y3QX1RLciU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559722366</pqid></control><display><type>article</type><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chandrika, V S ; Jeyakumar, A Ebenezer</creator><creatorcontrib>Chandrika, V S ; Jeyakumar, A Ebenezer</creatorcontrib><description>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</description><identifier>ISSN: 1546-9239</identifier><identifier>EISSN: 1554-3641</identifier><identifier>DOI: 10.3844/ajassp.2014.362.370</identifier><language>eng</language><subject>Cluster analysis ; Clustering ; Electric circuits ; Electronics ; Faults ; Motors ; Phase transformations ; Reluctance ; Wavelet transforms</subject><ispartof>American journal of applied sciences, 2014-01, Vol.11 (3), p.362-362</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chandrika, V S</creatorcontrib><creatorcontrib>Jeyakumar, A Ebenezer</creatorcontrib><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><title>American journal of applied sciences</title><description>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</description><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Electric circuits</subject><subject>Electronics</subject><subject>Faults</subject><subject>Motors</subject><subject>Phase transformations</subject><subject>Reluctance</subject><subject>Wavelet transforms</subject><issn>1546-9239</issn><issn>1554-3641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0EEqXwC1g8siT4K3Y9RolbItJESpx2tNLEkVpaWmI68O9xVXamu5Oe9066B4BnjEI6Y-y13bXOnUKCMAspJyEV6AZMcBSxgHKGby8944EkVN6DB-d2CHlM4An4mMdNrmGqtEp0VhYwK2C9znTyplJYqbxJdFwkCi5LXVYwrbKVqmFTZ8UCplmdVD4H1_FK5UpDXcVFPS-rJYyLFL4HS-VnmORNrVXlE4_gbmj3zj791Slo5spfCvJykSVxHnRERCiIpMR009uOczIgKyxGfc8RJpwKKTcRi9ph6BnGlIiZnAnRd8MGC0sEkgNrKZ2Cl-ve03j8Olv3bQ5b19n9vv20x7MzWFCEOJKC_I9GkccI5dyj9Ip249G50Q7mNG4P7fhjMDIXC-ZqwVwsGP9e4y3QX1RLciU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chandrika, V S</creator><creator>Jeyakumar, A Ebenezer</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><author>Chandrika, V S ; Jeyakumar, A Ebenezer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Electric circuits</topic><topic>Electronics</topic><topic>Faults</topic><topic>Motors</topic><topic>Phase transformations</topic><topic>Reluctance</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chandrika, V S</creatorcontrib><creatorcontrib>Jeyakumar, A Ebenezer</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>American journal of applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrika, V S</au><au>Jeyakumar, A Ebenezer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</atitle><jtitle>American journal of applied sciences</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>362</spage><epage>362</epage><pages>362-362</pages><issn>1546-9239</issn><eissn>1554-3641</eissn><abstract>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</abstract><doi>10.3844/ajassp.2014.362.370</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-9239
ispartof American journal of applied sciences, 2014-01, Vol.11 (3), p.362-362
issn 1546-9239
1554-3641
language eng
recordid cdi_proquest_miscellaneous_1730060972
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Cluster analysis
Clustering
Electric circuits
Electronics
Faults
Motors
Phase transformations
Reluctance
Wavelet transforms
title FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAULT%20DETECTION%20IN%20SWITCHED%20RELUCTANCE%20MOTOR%20DRIVES%20USING%20DISCRETE%20WAVELET%20TRANSFORM%20AND%20K-MEANS%20CLUSTERING&rft.jtitle=American%20journal%20of%20applied%20sciences&rft.au=Chandrika,%20V%20S&rft.date=2014-01-01&rft.volume=11&rft.issue=3&rft.spage=362&rft.epage=362&rft.pages=362-362&rft.issn=1546-9239&rft.eissn=1554-3641&rft_id=info:doi/10.3844/ajassp.2014.362.370&rft_dat=%3Cproquest_cross%3E1559722366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559722366&rft_id=info:pmid/&rfr_iscdi=true