FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING
This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open a...
Gespeichert in:
Veröffentlicht in: | American journal of applied sciences 2014-01, Vol.11 (3), p.362-362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 3 |
container_start_page | 362 |
container_title | American journal of applied sciences |
container_volume | 11 |
creator | Chandrika, V S Jeyakumar, A Ebenezer |
description | This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study. |
doi_str_mv | 10.3844/ajassp.2014.362.370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730060972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559722366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqXwC1g8siT4K3Y9RolbItJESpx2tNLEkVpaWmI68O9xVXamu5Oe9066B4BnjEI6Y-y13bXOnUKCMAspJyEV6AZMcBSxgHKGby8944EkVN6DB-d2CHlM4An4mMdNrmGqtEp0VhYwK2C9znTyplJYqbxJdFwkCi5LXVYwrbKVqmFTZ8UCplmdVD4H1_FK5UpDXcVFPS-rJYyLFL4HS-VnmORNrVXlE4_gbmj3zj791Slo5spfCvJykSVxHnRERCiIpMR009uOczIgKyxGfc8RJpwKKTcRi9ph6BnGlIiZnAnRd8MGC0sEkgNrKZ2Cl-ve03j8Olv3bQ5b19n9vv20x7MzWFCEOJKC_I9GkccI5dyj9Ip249G50Q7mNG4P7fhjMDIXC-ZqwVwsGP9e4y3QX1RLciU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559722366</pqid></control><display><type>article</type><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chandrika, V S ; Jeyakumar, A Ebenezer</creator><creatorcontrib>Chandrika, V S ; Jeyakumar, A Ebenezer</creatorcontrib><description>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</description><identifier>ISSN: 1546-9239</identifier><identifier>EISSN: 1554-3641</identifier><identifier>DOI: 10.3844/ajassp.2014.362.370</identifier><language>eng</language><subject>Cluster analysis ; Clustering ; Electric circuits ; Electronics ; Faults ; Motors ; Phase transformations ; Reluctance ; Wavelet transforms</subject><ispartof>American journal of applied sciences, 2014-01, Vol.11 (3), p.362-362</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chandrika, V S</creatorcontrib><creatorcontrib>Jeyakumar, A Ebenezer</creatorcontrib><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><title>American journal of applied sciences</title><description>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</description><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Electric circuits</subject><subject>Electronics</subject><subject>Faults</subject><subject>Motors</subject><subject>Phase transformations</subject><subject>Reluctance</subject><subject>Wavelet transforms</subject><issn>1546-9239</issn><issn>1554-3641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0EEqXwC1g8siT4K3Y9RolbItJESpx2tNLEkVpaWmI68O9xVXamu5Oe9066B4BnjEI6Y-y13bXOnUKCMAspJyEV6AZMcBSxgHKGby8944EkVN6DB-d2CHlM4An4mMdNrmGqtEp0VhYwK2C9znTyplJYqbxJdFwkCi5LXVYwrbKVqmFTZ8UCplmdVD4H1_FK5UpDXcVFPS-rJYyLFL4HS-VnmORNrVXlE4_gbmj3zj791Slo5spfCvJykSVxHnRERCiIpMR009uOczIgKyxGfc8RJpwKKTcRi9ph6BnGlIiZnAnRd8MGC0sEkgNrKZ2Cl-ve03j8Olv3bQ5b19n9vv20x7MzWFCEOJKC_I9GkccI5dyj9Ip249G50Q7mNG4P7fhjMDIXC-ZqwVwsGP9e4y3QX1RLciU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chandrika, V S</creator><creator>Jeyakumar, A Ebenezer</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</title><author>Chandrika, V S ; Jeyakumar, A Ebenezer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2750-59913bdec662f0e7e10dd601263799b545affd41132789877dcfb17e2709f4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Electric circuits</topic><topic>Electronics</topic><topic>Faults</topic><topic>Motors</topic><topic>Phase transformations</topic><topic>Reluctance</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chandrika, V S</creatorcontrib><creatorcontrib>Jeyakumar, A Ebenezer</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>American journal of applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrika, V S</au><au>Jeyakumar, A Ebenezer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING</atitle><jtitle>American journal of applied sciences</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>362</spage><epage>362</epage><pages>362-362</pages><issn>1546-9239</issn><eissn>1554-3641</eissn><abstract>This study presents a novel method of detection of inter turn shorts based on k means clustering technique. In addition to inter turn short detection, the other faults like open, short, phase to phase faults and DC voltage faults are detected through wavelet transforms and k means clustering. Open and short faults are classified using artificial neural network. All other faults are classified using Support Vector Machines. Switched reluctance motors are very popular in these days, because of ease in manufacturing and operation. Though an electronic circuit can detect the faults like open and short, the classification cannot be done effectively with electronic circuitry. Moreover, the early detection minimizes the faulty operation time and ensures the plant stability and saves the life of motor too. Hence, an integrated system to detect the major faults under a simulation model has been proposed in this study.</abstract><doi>10.3844/ajassp.2014.362.370</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-9239 |
ispartof | American journal of applied sciences, 2014-01, Vol.11 (3), p.362-362 |
issn | 1546-9239 1554-3641 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730060972 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Cluster analysis Clustering Electric circuits Electronics Faults Motors Phase transformations Reluctance Wavelet transforms |
title | FAULT DETECTION IN SWITCHED RELUCTANCE MOTOR DRIVES USING DISCRETE WAVELET TRANSFORM AND K-MEANS CLUSTERING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAULT%20DETECTION%20IN%20SWITCHED%20RELUCTANCE%20MOTOR%20DRIVES%20USING%20DISCRETE%20WAVELET%20TRANSFORM%20AND%20K-MEANS%20CLUSTERING&rft.jtitle=American%20journal%20of%20applied%20sciences&rft.au=Chandrika,%20V%20S&rft.date=2014-01-01&rft.volume=11&rft.issue=3&rft.spage=362&rft.epage=362&rft.pages=362-362&rft.issn=1546-9239&rft.eissn=1554-3641&rft_id=info:doi/10.3844/ajassp.2014.362.370&rft_dat=%3Cproquest_cross%3E1559722366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559722366&rft_id=info:pmid/&rfr_iscdi=true |