Nanoelectronic impedance detection of target cells
ABSTRACT Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a t...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2014-06, Vol.111 (6), p.1161-1169 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1169 |
---|---|
container_issue | 6 |
container_start_page | 1161 |
container_title | Biotechnology and bioengineering |
container_volume | 111 |
creator | Esfandyarpour, Rahim Javanmard, Mehdi Koochak, Zahra Harris, James S. Davis, Ronald W. |
description | ABSTRACT
Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a thin film conducting electrode layer at the bottom, an insulative oxide layer above, another conductive electrode layer above, and a protective oxide above. The electrical impedance is measured between the two electrode layers. Cells captured on the surface of the nanoneedle tip results in a decrease in the impedance across the sensing electrodes. The basic mechanisms behind the electrical response of cells in solution under an applied alternating electrical field stems from modulation of the relative permittivity at the interface. In this paper we discuss, the circuit model, the nanofabrication, and the testing and characterization of the sensor. We demonstrate proof of concept for detection of yeast cells with specificity. We envision the sensor presented in this paper to be combined with microfluidic pre‐concentration technologies to develop low cost point‐of‐care diagnostic assays for the clinical setting. Biotechnol. Bioeng. 2014;111: 1161–1169. © 2013 Wiley Periodicals, Inc.
A nano‐electronic sensor capable of measuring the dielectric properties of cells has been fabricated. Label free and real time affinity based bio sensing of yeast cells has been demonstrated. A full circuit model has been developed, the sensor behavior has been characterized and all the affecting mechanisms have been analyzed. |
doi_str_mv | 10.1002/bit.25171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730060199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1519840142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5601-f19ff30271c30cc4d99b36609e72afdf1c70865cbaaca47ee68f47a9d7ebb9673</originalsourceid><addsrcrecordid>eNqN0U9P2zAYBnALMdGOceALoEhc2CHw-k_s-AiIMaSqII1pR8txXqOUNCl2KuDbz11pD5MQnCxbPz_y64eQQwqnFICdVc1wygqq6A4ZU9AqB6Zhl4wBQOa80GxEvsY4S1tVSrlHRkxwXkpRjgmb2q7HFt0Q-q5xWTNfYG07h1mNQzpt-i7rfTbY8IBD5rBt4zfyxds24sHbuk9-_7i6v_yZT26vby7PJ7krJNDcU-09B6ao4-CcqLWuuJSgUTHra0-dglIWrrLWWaEQZemFsrpWWFVaKr5PTta5i9A_LTEOZt7E1Qtsh_0yGqp4mg-o1h_TgotSSMrYJyjVpQAqVvT4Pzrrl6FLMyfFmJZMKJHU97VyoY8xoDeL0MxteDUUzKoek-ox_-pJ9ugtcVnNsd7KTR8JnK3Bc9Pi6_tJ5uLmfhOZr280ccCX7Q0bHk36Q1WYP9NrM_11J6ZCKTPhfwFTraXP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522962474</pqid></control><display><type>article</type><title>Nanoelectronic impedance detection of target cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Esfandyarpour, Rahim ; Javanmard, Mehdi ; Koochak, Zahra ; Harris, James S. ; Davis, Ronald W.</creator><creatorcontrib>Esfandyarpour, Rahim ; Javanmard, Mehdi ; Koochak, Zahra ; Harris, James S. ; Davis, Ronald W.</creatorcontrib><description>ABSTRACT
Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a thin film conducting electrode layer at the bottom, an insulative oxide layer above, another conductive electrode layer above, and a protective oxide above. The electrical impedance is measured between the two electrode layers. Cells captured on the surface of the nanoneedle tip results in a decrease in the impedance across the sensing electrodes. The basic mechanisms behind the electrical response of cells in solution under an applied alternating electrical field stems from modulation of the relative permittivity at the interface. In this paper we discuss, the circuit model, the nanofabrication, and the testing and characterization of the sensor. We demonstrate proof of concept for detection of yeast cells with specificity. We envision the sensor presented in this paper to be combined with microfluidic pre‐concentration technologies to develop low cost point‐of‐care diagnostic assays for the clinical setting. Biotechnol. Bioeng. 2014;111: 1161–1169. © 2013 Wiley Periodicals, Inc.
A nano‐electronic sensor capable of measuring the dielectric properties of cells has been fabricated. Label free and real time affinity based bio sensing of yeast cells has been demonstrated. A full circuit model has been developed, the sensor behavior has been characterized and all the affecting mechanisms have been analyzed.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25171</identifier><identifier>PMID: 24338648</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>biosensing ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; cell detection ; Cell Physiological Phenomena ; Cells ; Electric Impedance ; Electrodes ; Flow cytometry ; Fluorescence ; Impedance ; impedance detection ; Microfluidic Analytical Techniques ; nanobiotechnology ; Nanomaterials ; Nanostructure ; Nanotechnology ; Oxides ; Sensors ; Stems ; Target detection ; Yeasts - isolation & purification</subject><ispartof>Biotechnology and bioengineering, 2014-06, Vol.111 (6), p.1161-1169</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5601-f19ff30271c30cc4d99b36609e72afdf1c70865cbaaca47ee68f47a9d7ebb9673</citedby><cites>FETCH-LOGICAL-c5601-f19ff30271c30cc4d99b36609e72afdf1c70865cbaaca47ee68f47a9d7ebb9673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.25171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.25171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24338648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Esfandyarpour, Rahim</creatorcontrib><creatorcontrib>Javanmard, Mehdi</creatorcontrib><creatorcontrib>Koochak, Zahra</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><title>Nanoelectronic impedance detection of target cells</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT
Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a thin film conducting electrode layer at the bottom, an insulative oxide layer above, another conductive electrode layer above, and a protective oxide above. The electrical impedance is measured between the two electrode layers. Cells captured on the surface of the nanoneedle tip results in a decrease in the impedance across the sensing electrodes. The basic mechanisms behind the electrical response of cells in solution under an applied alternating electrical field stems from modulation of the relative permittivity at the interface. In this paper we discuss, the circuit model, the nanofabrication, and the testing and characterization of the sensor. We demonstrate proof of concept for detection of yeast cells with specificity. We envision the sensor presented in this paper to be combined with microfluidic pre‐concentration technologies to develop low cost point‐of‐care diagnostic assays for the clinical setting. Biotechnol. Bioeng. 2014;111: 1161–1169. © 2013 Wiley Periodicals, Inc.
A nano‐electronic sensor capable of measuring the dielectric properties of cells has been fabricated. Label free and real time affinity based bio sensing of yeast cells has been demonstrated. A full circuit model has been developed, the sensor behavior has been characterized and all the affecting mechanisms have been analyzed.</description><subject>biosensing</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>cell detection</subject><subject>Cell Physiological Phenomena</subject><subject>Cells</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Impedance</subject><subject>impedance detection</subject><subject>Microfluidic Analytical Techniques</subject><subject>nanobiotechnology</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Sensors</subject><subject>Stems</subject><subject>Target detection</subject><subject>Yeasts - isolation & purification</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U9P2zAYBnALMdGOceALoEhc2CHw-k_s-AiIMaSqII1pR8txXqOUNCl2KuDbz11pD5MQnCxbPz_y64eQQwqnFICdVc1wygqq6A4ZU9AqB6Zhl4wBQOa80GxEvsY4S1tVSrlHRkxwXkpRjgmb2q7HFt0Q-q5xWTNfYG07h1mNQzpt-i7rfTbY8IBD5rBt4zfyxds24sHbuk9-_7i6v_yZT26vby7PJ7krJNDcU-09B6ao4-CcqLWuuJSgUTHra0-dglIWrrLWWaEQZemFsrpWWFVaKr5PTta5i9A_LTEOZt7E1Qtsh_0yGqp4mg-o1h_TgotSSMrYJyjVpQAqVvT4Pzrrl6FLMyfFmJZMKJHU97VyoY8xoDeL0MxteDUUzKoek-ox_-pJ9ugtcVnNsd7KTR8JnK3Bc9Pi6_tJ5uLmfhOZr280ccCX7Q0bHk36Q1WYP9NrM_11J6ZCKTPhfwFTraXP</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Esfandyarpour, Rahim</creator><creator>Javanmard, Mehdi</creator><creator>Koochak, Zahra</creator><creator>Harris, James S.</creator><creator>Davis, Ronald W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201406</creationdate><title>Nanoelectronic impedance detection of target cells</title><author>Esfandyarpour, Rahim ; Javanmard, Mehdi ; Koochak, Zahra ; Harris, James S. ; Davis, Ronald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5601-f19ff30271c30cc4d99b36609e72afdf1c70865cbaaca47ee68f47a9d7ebb9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>biosensing</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>cell detection</topic><topic>Cell Physiological Phenomena</topic><topic>Cells</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Impedance</topic><topic>impedance detection</topic><topic>Microfluidic Analytical Techniques</topic><topic>nanobiotechnology</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Sensors</topic><topic>Stems</topic><topic>Target detection</topic><topic>Yeasts - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esfandyarpour, Rahim</creatorcontrib><creatorcontrib>Javanmard, Mehdi</creatorcontrib><creatorcontrib>Koochak, Zahra</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esfandyarpour, Rahim</au><au>Javanmard, Mehdi</au><au>Koochak, Zahra</au><au>Harris, James S.</au><au>Davis, Ronald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoelectronic impedance detection of target cells</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2014-06</date><risdate>2014</risdate><volume>111</volume><issue>6</issue><spage>1161</spage><epage>1169</epage><pages>1161-1169</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a thin film conducting electrode layer at the bottom, an insulative oxide layer above, another conductive electrode layer above, and a protective oxide above. The electrical impedance is measured between the two electrode layers. Cells captured on the surface of the nanoneedle tip results in a decrease in the impedance across the sensing electrodes. The basic mechanisms behind the electrical response of cells in solution under an applied alternating electrical field stems from modulation of the relative permittivity at the interface. In this paper we discuss, the circuit model, the nanofabrication, and the testing and characterization of the sensor. We demonstrate proof of concept for detection of yeast cells with specificity. We envision the sensor presented in this paper to be combined with microfluidic pre‐concentration technologies to develop low cost point‐of‐care diagnostic assays for the clinical setting. Biotechnol. Bioeng. 2014;111: 1161–1169. © 2013 Wiley Periodicals, Inc.
A nano‐electronic sensor capable of measuring the dielectric properties of cells has been fabricated. Label free and real time affinity based bio sensing of yeast cells has been demonstrated. A full circuit model has been developed, the sensor behavior has been characterized and all the affecting mechanisms have been analyzed.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24338648</pmid><doi>10.1002/bit.25171</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2014-06, Vol.111 (6), p.1161-1169 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730060199 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | biosensing Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors cell detection Cell Physiological Phenomena Cells Electric Impedance Electrodes Flow cytometry Fluorescence Impedance impedance detection Microfluidic Analytical Techniques nanobiotechnology Nanomaterials Nanostructure Nanotechnology Oxides Sensors Stems Target detection Yeasts - isolation & purification |
title | Nanoelectronic impedance detection of target cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoelectronic%20impedance%20detection%20of%20target%20cells&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Esfandyarpour,%20Rahim&rft.date=2014-06&rft.volume=111&rft.issue=6&rft.spage=1161&rft.epage=1169&rft.pages=1161-1169&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25171&rft_dat=%3Cproquest_cross%3E1519840142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522962474&rft_id=info:pmid/24338648&rfr_iscdi=true |