Extreme point inequalities and geometry of the rank sparsity ball
We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l 1 norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general c...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2015-08, Vol.152 (1-2), p.521-544 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 1-2 |
container_start_page | 521 |
container_title | Mathematical programming |
container_volume | 152 |
creator | Drusvyatskiy, D. Vavasis, S. A. Wolkowicz, H. |
description | We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the
l
1
norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set. |
doi_str_mv | 10.1007/s10107-014-0795-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730059628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730059628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-dbead3e77797c13bb2c7fc6bf977201cc8b0f90bf3617dd3019b49ddb45862033</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOI7-AHcBN26i9zZt0iyHYXyA4EbXIWnTsWNfk6Tg_Hs71IUIru7mfIfLIeQa4Q4B5H1AQJAMMGUgVcbyE7LAlAuWilSckgVAkrFMIJyTixB2AIA8zxdktfmK3rWODn3dRVp3bj-apo61C9R0Jd26vnXRH2hf0fjhqDfdJw2D8aGOB2pN01ySs8o0wV393CV5f9i8rZ_Yy-vj83r1wooUVWSldabkTkqpZIHc2qSQVSFspaRMAIsit1ApsBUXKMuSAyqbqrK0aZaLBDhfktvZO_h-P7oQdVuHwjWN6Vw_Bo2SA2RKJPmE3vxBd_3ou-k7jUIJzBCVmCicqcL3IXhX6cHXrfEHjaCPUfUcVU9R9TGqPpqTeRMmtts6_8v87-gbgTF5Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696151196</pqid></control><display><type>article</type><title>Extreme point inequalities and geometry of the rank sparsity ball</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Drusvyatskiy, D. ; Vavasis, S. A. ; Wolkowicz, H.</creator><creatorcontrib>Drusvyatskiy, D. ; Vavasis, S. A. ; Wolkowicz, H.</creatorcontrib><description>We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the
l
1
norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0795-8</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Balancing ; Byproducts ; Calculus ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convex analysis ; Full Length Paper ; Functions (mathematics) ; Geometry ; Inequalities ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Norms ; Numerical Analysis ; Optimization ; Sparsity ; Studies ; Texts ; Theoretical</subject><ispartof>Mathematical programming, 2015-08, Vol.152 (1-2), p.521-544</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-dbead3e77797c13bb2c7fc6bf977201cc8b0f90bf3617dd3019b49ddb45862033</citedby><cites>FETCH-LOGICAL-c419t-dbead3e77797c13bb2c7fc6bf977201cc8b0f90bf3617dd3019b49ddb45862033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-014-0795-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-014-0795-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Drusvyatskiy, D.</creatorcontrib><creatorcontrib>Vavasis, S. A.</creatorcontrib><creatorcontrib>Wolkowicz, H.</creatorcontrib><title>Extreme point inequalities and geometry of the rank sparsity ball</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the
l
1
norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set.</description><subject>Balancing</subject><subject>Byproducts</subject><subject>Calculus</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convex analysis</subject><subject>Full Length Paper</subject><subject>Functions (mathematics)</subject><subject>Geometry</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Norms</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Sparsity</subject><subject>Studies</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAURoMoOI7-AHcBN26i9zZt0iyHYXyA4EbXIWnTsWNfk6Tg_Hs71IUIru7mfIfLIeQa4Q4B5H1AQJAMMGUgVcbyE7LAlAuWilSckgVAkrFMIJyTixB2AIA8zxdktfmK3rWODn3dRVp3bj-apo61C9R0Jd26vnXRH2hf0fjhqDfdJw2D8aGOB2pN01ySs8o0wV393CV5f9i8rZ_Yy-vj83r1wooUVWSldabkTkqpZIHc2qSQVSFspaRMAIsit1ApsBUXKMuSAyqbqrK0aZaLBDhfktvZO_h-P7oQdVuHwjWN6Vw_Bo2SA2RKJPmE3vxBd_3ou-k7jUIJzBCVmCicqcL3IXhX6cHXrfEHjaCPUfUcVU9R9TGqPpqTeRMmtts6_8v87-gbgTF5Cw</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Drusvyatskiy, D.</creator><creator>Vavasis, S. A.</creator><creator>Wolkowicz, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>Extreme point inequalities and geometry of the rank sparsity ball</title><author>Drusvyatskiy, D. ; Vavasis, S. A. ; Wolkowicz, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-dbead3e77797c13bb2c7fc6bf977201cc8b0f90bf3617dd3019b49ddb45862033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Balancing</topic><topic>Byproducts</topic><topic>Calculus</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convex analysis</topic><topic>Full Length Paper</topic><topic>Functions (mathematics)</topic><topic>Geometry</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Norms</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Sparsity</topic><topic>Studies</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drusvyatskiy, D.</creatorcontrib><creatorcontrib>Vavasis, S. A.</creatorcontrib><creatorcontrib>Wolkowicz, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drusvyatskiy, D.</au><au>Vavasis, S. A.</au><au>Wolkowicz, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme point inequalities and geometry of the rank sparsity ball</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>152</volume><issue>1-2</issue><spage>521</spage><epage>544</epage><pages>521-544</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the
l
1
norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0795-8</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2015-08, Vol.152 (1-2), p.521-544 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730059628 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Balancing Byproducts Calculus Calculus of Variations and Optimal Control Optimization Combinatorics Convex analysis Full Length Paper Functions (mathematics) Geometry Inequalities Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Norms Numerical Analysis Optimization Sparsity Studies Texts Theoretical |
title | Extreme point inequalities and geometry of the rank sparsity ball |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20point%20inequalities%20and%20geometry%20of%20the%20rank%20sparsity%20ball&rft.jtitle=Mathematical%20programming&rft.au=Drusvyatskiy,%20D.&rft.date=2015-08-01&rft.volume=152&rft.issue=1-2&rft.spage=521&rft.epage=544&rft.pages=521-544&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0795-8&rft_dat=%3Cproquest_cross%3E1730059628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696151196&rft_id=info:pmid/&rfr_iscdi=true |