Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model

Season- and stability-dependent turbulence intensity ( σ u / u * , σ v / u * , σ w / u * ) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteorology and atmospheric physics 2015-08, Vol.127 (4), p.435-450
Hauptverfasser: Hari Prasad, K. B. R. R., Srinivas, C. V., Satyanarayana, A. N. V., Naidu, C. V., Baskaran, R., Venkatraman, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 4
container_start_page 435
container_title Meteorology and atmospheric physics
container_volume 127
creator Hari Prasad, K. B. R. R.
Srinivas, C. V.
Satyanarayana, A. N. V.
Naidu, C. V.
Baskaran, R.
Venkatraman, B.
description Season- and stability-dependent turbulence intensity ( σ u / u * , σ v / u * , σ w / u * ) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u ′, v ′, w ′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF 6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.
doi_str_mv 10.1007/s00703-015-0373-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730059500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730059500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-97a5591f2917531aa0c2acb42b401c07abbdf1180a719cf17d472de17c5486113</originalsourceid><addsrcrecordid>eNqNkkGL1jAQhovsgp-7_gBvBS9eus60TfP1KIurCwte9Bym6fQjS5rUJD18_j__l6kVXARhLxOSed43M_AWxRuEGwSQ72Mu0FSAooJGNpV4URywbbpKQCcuigOglJXsJb4sXsX4CPne1Xgoft75MK-WkvGu9FMZEw3GmnSuRl7YjexSyfNigtFky8A7GcvJhzKtYVjtRhiX2EWTDOdO8HMZ1zCR5tLSmf-C-WFmyj2es2o3GU1cOMTt-4UCzZw4mB_7PMaVlC1OgdzJ0G8gGW35qWj2I9vr4nIiG_n1n_Oq-Hb38evt5-rhy6f72w8PlW6Odap6SUL0ONU9StEgEeia9NDWQwuoQdIwjBPiEUhiryeUYyvrkVFq0R47xOaqeLf7LsF_XzkmNZuo2Vpy7NeoUDYAohcAz0Chxx7ro8jo23_QR78GlxdR2PWykyKXTOFO6eBjDDypJZiZwlkhqC0Das-AyhlQWwbU5lzvmphZd-LwxPm_ol92_LoZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697675976</pqid></control><display><type>article</type><title>Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hari Prasad, K. B. R. R. ; Srinivas, C. V. ; Satyanarayana, A. N. V. ; Naidu, C. V. ; Baskaran, R. ; Venkatraman, B.</creator><creatorcontrib>Hari Prasad, K. B. R. R. ; Srinivas, C. V. ; Satyanarayana, A. N. V. ; Naidu, C. V. ; Baskaran, R. ; Venkatraman, B.</creatorcontrib><description>Season- and stability-dependent turbulence intensity ( σ u / u * , σ v / u * , σ w / u * ) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u ′, v ′, w ′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF 6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.</description><identifier>ISSN: 0177-7971</identifier><identifier>EISSN: 1436-5065</identifier><identifier>DOI: 10.1007/s00703-015-0373-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aquatic Pollution ; Atmospheric Sciences ; Atmospheric turbulence ; Computational fluid dynamics ; Dispersions ; Earth and Environmental Science ; Earth Sciences ; Fluid flow ; Fourier transforms ; Marine ; Math. Appl. in Environmental Science ; Mathematical models ; Meteorology ; Original Paper ; Parametrization ; Plumes ; Pollution dispersion ; Simulation ; Terrestrial Pollution ; Turbulence ; Turbulent flow ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wind</subject><ispartof>Meteorology and atmospheric physics, 2015-08, Vol.127 (4), p.435-450</ispartof><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-97a5591f2917531aa0c2acb42b401c07abbdf1180a719cf17d472de17c5486113</citedby><cites>FETCH-LOGICAL-c382t-97a5591f2917531aa0c2acb42b401c07abbdf1180a719cf17d472de17c5486113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00703-015-0373-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00703-015-0373-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Hari Prasad, K. B. R. R.</creatorcontrib><creatorcontrib>Srinivas, C. V.</creatorcontrib><creatorcontrib>Satyanarayana, A. N. V.</creatorcontrib><creatorcontrib>Naidu, C. V.</creatorcontrib><creatorcontrib>Baskaran, R.</creatorcontrib><creatorcontrib>Venkatraman, B.</creatorcontrib><title>Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model</title><title>Meteorology and atmospheric physics</title><addtitle>Meteorol Atmos Phys</addtitle><description>Season- and stability-dependent turbulence intensity ( σ u / u * , σ v / u * , σ w / u * ) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u ′, v ′, w ′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF 6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric turbulence</subject><subject>Computational fluid dynamics</subject><subject>Dispersions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid flow</subject><subject>Fourier transforms</subject><subject>Marine</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Original Paper</subject><subject>Parametrization</subject><subject>Plumes</subject><subject>Pollution dispersion</subject><subject>Simulation</subject><subject>Terrestrial Pollution</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wind</subject><issn>0177-7971</issn><issn>1436-5065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkGL1jAQhovsgp-7_gBvBS9eus60TfP1KIurCwte9Bym6fQjS5rUJD18_j__l6kVXARhLxOSed43M_AWxRuEGwSQ72Mu0FSAooJGNpV4URywbbpKQCcuigOglJXsJb4sXsX4CPne1Xgoft75MK-WkvGu9FMZEw3GmnSuRl7YjexSyfNigtFky8A7GcvJhzKtYVjtRhiX2EWTDOdO8HMZ1zCR5tLSmf-C-WFmyj2es2o3GU1cOMTt-4UCzZw4mB_7PMaVlC1OgdzJ0G8gGW35qWj2I9vr4nIiG_n1n_Oq-Hb38evt5-rhy6f72w8PlW6Odap6SUL0ONU9StEgEeia9NDWQwuoQdIwjBPiEUhiryeUYyvrkVFq0R47xOaqeLf7LsF_XzkmNZuo2Vpy7NeoUDYAohcAz0Chxx7ro8jo23_QR78GlxdR2PWykyKXTOFO6eBjDDypJZiZwlkhqC0Das-AyhlQWwbU5lzvmphZd-LwxPm_ol92_LoZ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Hari Prasad, K. B. R. R.</creator><creator>Srinivas, C. V.</creator><creator>Satyanarayana, A. N. V.</creator><creator>Naidu, C. V.</creator><creator>Baskaran, R.</creator><creator>Venkatraman, B.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model</title><author>Hari Prasad, K. B. R. R. ; Srinivas, C. V. ; Satyanarayana, A. N. V. ; Naidu, C. V. ; Baskaran, R. ; Venkatraman, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-97a5591f2917531aa0c2acb42b401c07abbdf1180a719cf17d472de17c5486113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric turbulence</topic><topic>Computational fluid dynamics</topic><topic>Dispersions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid flow</topic><topic>Fourier transforms</topic><topic>Marine</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Original Paper</topic><topic>Parametrization</topic><topic>Plumes</topic><topic>Pollution dispersion</topic><topic>Simulation</topic><topic>Terrestrial Pollution</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hari Prasad, K. B. R. R.</creatorcontrib><creatorcontrib>Srinivas, C. V.</creatorcontrib><creatorcontrib>Satyanarayana, A. N. V.</creatorcontrib><creatorcontrib>Naidu, C. V.</creatorcontrib><creatorcontrib>Baskaran, R.</creatorcontrib><creatorcontrib>Venkatraman, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Meteorology and atmospheric physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hari Prasad, K. B. R. R.</au><au>Srinivas, C. V.</au><au>Satyanarayana, A. N. V.</au><au>Naidu, C. V.</au><au>Baskaran, R.</au><au>Venkatraman, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model</atitle><jtitle>Meteorology and atmospheric physics</jtitle><stitle>Meteorol Atmos Phys</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>127</volume><issue>4</issue><spage>435</spage><epage>450</epage><pages>435-450</pages><issn>0177-7971</issn><eissn>1436-5065</eissn><abstract>Season- and stability-dependent turbulence intensity ( σ u / u * , σ v / u * , σ w / u * ) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u ′, v ′, w ′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF 6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00703-015-0373-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-7971
ispartof Meteorology and atmospheric physics, 2015-08, Vol.127 (4), p.435-450
issn 0177-7971
1436-5065
language eng
recordid cdi_proquest_miscellaneous_1730059500
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Atmospheric Sciences
Atmospheric turbulence
Computational fluid dynamics
Dispersions
Earth and Environmental Science
Earth Sciences
Fluid flow
Fourier transforms
Marine
Math. Appl. in Environmental Science
Mathematical models
Meteorology
Original Paper
Parametrization
Plumes
Pollution dispersion
Simulation
Terrestrial Pollution
Turbulence
Turbulent flow
Waste Water Technology
Water Management
Water Pollution Control
Wind
title Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20stability-dependent%20empirical%20relations%20for%20turbulent%20intensities%20from%20surface%20layer%20turbulence%20measurements%20for%20dispersion%20parameterization%20in%20a%20lagrangian%20particle%20dispersion%20model&rft.jtitle=Meteorology%20and%20atmospheric%20physics&rft.au=Hari%20Prasad,%20K.%20B.%20R.%20R.&rft.date=2015-08-01&rft.volume=127&rft.issue=4&rft.spage=435&rft.epage=450&rft.pages=435-450&rft.issn=0177-7971&rft.eissn=1436-5065&rft_id=info:doi/10.1007/s00703-015-0373-5&rft_dat=%3Cproquest_cross%3E1730059500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697675976&rft_id=info:pmid/&rfr_iscdi=true