Performance Evaluation of Search Engines Using Enhanced Vector Space Model

Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer science 2015, Vol.11 (4), p.692-698
Hauptverfasser: Singh, Jitendra Nath, Dwivedi, Sanjay K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 4
container_start_page 692
container_title Journal of computer science
container_volume 11
creator Singh, Jitendra Nath
Dwivedi, Sanjay K.
description Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.
doi_str_mv 10.3844/jcssp.2015.692.698
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730053570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730053570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKt_wFWWbqbmncxSSn1RUah1G9L0pp0ynYxJK_jvzaiLw70XzrkcPoSuKZlwI8TtzufcTxihcqJqVmRO0IhKySqliD4ddlFXXHF1ji5y3hHCFdNshJ7fIIWY9q7zgGdfrj26QxM7HANegEt-i2fdpukg42Vuuk25toN1jT_AH2LCi96V4EtcQ3uJzoJrM1z9zzFa3s_ep4_V_PXhaXo3rzzjtanoyge6MiwEKpzQNWWaM03WLBAgxksRvCbAuNRe1LoUNVyuNGVBCR-4l3yMbv7-9il-HiEf7L7JHtrWdRCP2VLNCZElT4qV_Vl9ijknCLZPzd6lb0uJHcDZX3B2AGcLuCLDfwBm42ER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730053570</pqid></control><display><type>article</type><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</creator><creatorcontrib>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</creatorcontrib><description>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</description><identifier>ISSN: 1549-3636</identifier><identifier>EISSN: 1552-6607</identifier><identifier>DOI: 10.3844/jcssp.2015.692.698</identifier><language>eng</language><subject>Computation ; Mathematical analysis ; Mathematical models ; Queries ; Search engines ; Similarity ; Trigonometric functions ; Vector spaces</subject><ispartof>Journal of computer science, 2015, Vol.11 (4), p.692-698</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Jitendra Nath</creatorcontrib><creatorcontrib>Dwivedi, Sanjay K.</creatorcontrib><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><title>Journal of computer science</title><description>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</description><subject>Computation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Queries</subject><subject>Search engines</subject><subject>Similarity</subject><subject>Trigonometric functions</subject><subject>Vector spaces</subject><issn>1549-3636</issn><issn>1552-6607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKt_wFWWbqbmncxSSn1RUah1G9L0pp0ynYxJK_jvzaiLw70XzrkcPoSuKZlwI8TtzufcTxihcqJqVmRO0IhKySqliD4ddlFXXHF1ji5y3hHCFdNshJ7fIIWY9q7zgGdfrj26QxM7HANegEt-i2fdpukg42Vuuk25toN1jT_AH2LCi96V4EtcQ3uJzoJrM1z9zzFa3s_ep4_V_PXhaXo3rzzjtanoyge6MiwEKpzQNWWaM03WLBAgxksRvCbAuNRe1LoUNVyuNGVBCR-4l3yMbv7-9il-HiEf7L7JHtrWdRCP2VLNCZElT4qV_Vl9ijknCLZPzd6lb0uJHcDZX3B2AGcLuCLDfwBm42ER</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Singh, Jitendra Nath</creator><creator>Dwivedi, Sanjay K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2015</creationdate><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><author>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Queries</topic><topic>Search engines</topic><topic>Similarity</topic><topic>Trigonometric functions</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Jitendra Nath</creatorcontrib><creatorcontrib>Dwivedi, Sanjay K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Jitendra Nath</au><au>Dwivedi, Sanjay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</atitle><jtitle>Journal of computer science</jtitle><date>2015</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>692</spage><epage>698</epage><pages>692-698</pages><issn>1549-3636</issn><eissn>1552-6607</eissn><abstract>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</abstract><doi>10.3844/jcssp.2015.692.698</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3636
ispartof Journal of computer science, 2015, Vol.11 (4), p.692-698
issn 1549-3636
1552-6607
language eng
recordid cdi_proquest_miscellaneous_1730053570
source EZB-FREE-00999 freely available EZB journals
subjects Computation
Mathematical analysis
Mathematical models
Queries
Search engines
Similarity
Trigonometric functions
Vector spaces
title Performance Evaluation of Search Engines Using Enhanced Vector Space Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20of%20Search%20Engines%20Using%20Enhanced%20Vector%20Space%20Model&rft.jtitle=Journal%20of%20computer%20science&rft.au=Singh,%20Jitendra%20Nath&rft.date=2015&rft.volume=11&rft.issue=4&rft.spage=692&rft.epage=698&rft.pages=692-698&rft.issn=1549-3636&rft.eissn=1552-6607&rft_id=info:doi/10.3844/jcssp.2015.692.698&rft_dat=%3Cproquest_cross%3E1730053570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730053570&rft_id=info:pmid/&rfr_iscdi=true