Performance Evaluation of Search Engines Using Enhanced Vector Space Model
Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity...
Gespeichert in:
Veröffentlicht in: | Journal of computer science 2015, Vol.11 (4), p.692-698 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 4 |
container_start_page | 692 |
container_title | Journal of computer science |
container_volume | 11 |
creator | Singh, Jitendra Nath Dwivedi, Sanjay K. |
description | Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model. |
doi_str_mv | 10.3844/jcssp.2015.692.698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730053570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730053570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKt_wFWWbqbmncxSSn1RUah1G9L0pp0ynYxJK_jvzaiLw70XzrkcPoSuKZlwI8TtzufcTxihcqJqVmRO0IhKySqliD4ddlFXXHF1ji5y3hHCFdNshJ7fIIWY9q7zgGdfrj26QxM7HANegEt-i2fdpukg42Vuuk25toN1jT_AH2LCi96V4EtcQ3uJzoJrM1z9zzFa3s_ep4_V_PXhaXo3rzzjtanoyge6MiwEKpzQNWWaM03WLBAgxksRvCbAuNRe1LoUNVyuNGVBCR-4l3yMbv7-9il-HiEf7L7JHtrWdRCP2VLNCZElT4qV_Vl9ijknCLZPzd6lb0uJHcDZX3B2AGcLuCLDfwBm42ER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730053570</pqid></control><display><type>article</type><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</creator><creatorcontrib>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</creatorcontrib><description>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</description><identifier>ISSN: 1549-3636</identifier><identifier>EISSN: 1552-6607</identifier><identifier>DOI: 10.3844/jcssp.2015.692.698</identifier><language>eng</language><subject>Computation ; Mathematical analysis ; Mathematical models ; Queries ; Search engines ; Similarity ; Trigonometric functions ; Vector spaces</subject><ispartof>Journal of computer science, 2015, Vol.11 (4), p.692-698</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Jitendra Nath</creatorcontrib><creatorcontrib>Dwivedi, Sanjay K.</creatorcontrib><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><title>Journal of computer science</title><description>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</description><subject>Computation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Queries</subject><subject>Search engines</subject><subject>Similarity</subject><subject>Trigonometric functions</subject><subject>Vector spaces</subject><issn>1549-3636</issn><issn>1552-6607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKt_wFWWbqbmncxSSn1RUah1G9L0pp0ynYxJK_jvzaiLw70XzrkcPoSuKZlwI8TtzufcTxihcqJqVmRO0IhKySqliD4ddlFXXHF1ji5y3hHCFdNshJ7fIIWY9q7zgGdfrj26QxM7HANegEt-i2fdpukg42Vuuk25toN1jT_AH2LCi96V4EtcQ3uJzoJrM1z9zzFa3s_ep4_V_PXhaXo3rzzjtanoyge6MiwEKpzQNWWaM03WLBAgxksRvCbAuNRe1LoUNVyuNGVBCR-4l3yMbv7-9il-HiEf7L7JHtrWdRCP2VLNCZElT4qV_Vl9ijknCLZPzd6lb0uJHcDZX3B2AGcLuCLDfwBm42ER</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Singh, Jitendra Nath</creator><creator>Dwivedi, Sanjay K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2015</creationdate><title>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</title><author>Singh, Jitendra Nath ; Dwivedi, Sanjay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2398-1bcf1b82ff14a4791273270d2f0e08c54fc70e2357c497003835b712f64cf3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Queries</topic><topic>Search engines</topic><topic>Similarity</topic><topic>Trigonometric functions</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Jitendra Nath</creatorcontrib><creatorcontrib>Dwivedi, Sanjay K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Jitendra Nath</au><au>Dwivedi, Sanjay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation of Search Engines Using Enhanced Vector Space Model</atitle><jtitle>Journal of computer science</jtitle><date>2015</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>692</spage><epage>698</epage><pages>692-698</pages><issn>1549-3636</issn><eissn>1552-6607</eissn><abstract>Vector space model allows computing a continuous degree of similarity between queries and retrieved documents and then ranks the documents in increasing order of cosine (similarity) value. It computes cosine or similarity value using their cosine function. The cosine function computes the similarity value by computing the weight of each term in the documents using a weighting scheme but it is a complex process to compute the weight of each term in the documents. It is also found that sometimes it fails to compute a similarity score. Firstly, if there is only one document in the corpus and query terms match with the document and secondly, if the number of documents containing query terms and total number of documents retrieved are equal. To address this problem in order to improve the performance, the researchers proposed an enhanced approach for computation of cosine or similarity value by enhancing the vector space model.</abstract><doi>10.3844/jcssp.2015.692.698</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3636 |
ispartof | Journal of computer science, 2015, Vol.11 (4), p.692-698 |
issn | 1549-3636 1552-6607 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730053570 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Computation Mathematical analysis Mathematical models Queries Search engines Similarity Trigonometric functions Vector spaces |
title | Performance Evaluation of Search Engines Using Enhanced Vector Space Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20of%20Search%20Engines%20Using%20Enhanced%20Vector%20Space%20Model&rft.jtitle=Journal%20of%20computer%20science&rft.au=Singh,%20Jitendra%20Nath&rft.date=2015&rft.volume=11&rft.issue=4&rft.spage=692&rft.epage=698&rft.pages=692-698&rft.issn=1549-3636&rft.eissn=1552-6607&rft_id=info:doi/10.3844/jcssp.2015.692.698&rft_dat=%3Cproquest_cross%3E1730053570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730053570&rft_id=info:pmid/&rfr_iscdi=true |