Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia

An electrical resistivity tomography survey has been conducted along the eastern coast of the Gulf of Aqaba in order to assess the salinity of the coastal shallow aquifer. The study area is extended from Ra’s Shikh Humayd to the town of Maqnah, northwest of Saudi Arabia. Eight electrical profiles we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2015-08, Vol.74 (3), p.2105-2114
Hauptverfasser: Bahkaly, Ibrahim M, El-Waheidi, Mahmoud M, Jallouli, Chokri, Batayneh, Awni T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2114
container_issue 3
container_start_page 2105
container_title Environmental earth sciences
container_volume 74
creator Bahkaly, Ibrahim M
El-Waheidi, Mahmoud M
Jallouli, Chokri
Batayneh, Awni T
description An electrical resistivity tomography survey has been conducted along the eastern coast of the Gulf of Aqaba in order to assess the salinity of the coastal shallow aquifer. The study area is extended from Ra’s Shikh Humayd to the town of Maqnah, northwest of Saudi Arabia. Eight electrical profiles were conducted using the Wenner–Schlumberger configuration. The total length of each profile was 360 m providing an expected maximum depth of penetration of about 50 m. All electrical profiles were conducted perpendicular to the coast and directed in the west–east direction. The inversion of the electrical data provided a clear two-dimensional image of the subsurface in the area that reflected the variations in the resistivity of the shallow aquifer system. The subsurface is composed of three layers: the upper layer corresponds to the dry alluvial and gravel deposits that have resistivity values in the range between 40 and 1400 Ω m. The second layer is the saturated zone of the alluvial sediments which represents the coastal aquifer in the study area. The resistivity value of the saturated zone is in the range of 0.15 to 25 Ω m. The lower layer in the subsurface stratification is the resistive bedrock which has resistivity values of more than 100 Ω m. It is composed of Pleistocene–Miocene sediments. The extension of saline water body has been mapped along all electrical profiles. The interpretation of the resistivity models shows that the salinity of the groundwater in the area is strongly related to three main factors: (1) the closeness to the coast; (2) closeness to wadis and low areas which allow saline surface water to infiltrate into the shallow aquifer and; (3) the abundance of gypsum outcrop in the vicinity. This last factor emphasizes the important effect of the local geological setting on the salinity of groundwater; the abundant supply of leached gypsum contributes to the salinity of the shallow aquifer.
doi_str_mv 10.1007/s12665-015-4195-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730047959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730047959</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-d1e52c43677cd3cd09d50c197066018f32832f8b445c872417568a6d2cb4996c3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhtRcNndB_BkwIsHW_OnO514G4ZVF1YEd_ccatLp6Sw9yUwqzTL7DD60GVpEPIh1qaL4fR9VfFX1itH3jNLuAzIuZVtT1tYN02399Kw6Y0rKWnKtn_-eFX1ZXSI-0FKCCU3lWfVjhegQdy5kEgeCI0xTfCRwmP3gEkGYfPD5SHwgeXRkdYANkHUEzDCR_QRlP6MPW3L1_Y7sXB5j_5EAsYCOYJ7748n1KxwCjCS5rY_hHQkx5fHRYXYpkFuYe09WCTYeLqoXA0zoLn_18-r-09Xd-kt98-3z9Xp1U0PDda575lpuGyG7zvbC9lT3LbVMd1RKytQguBJ8UJumaa3qeMO6ViqQPbebRmtpxXn1dvHdp3iYyyFm59G6aYLg4oyGdYLSptOt_g-UaqZ0J1VB3_yFPsQ5hfKIYbJ4KS4VLRRbKJsiYnKD2Se_g3Q0jJpTmmZJ05Q0zSlN81Q0fNFgYcPWpT-c_yF6vYgGiAa2yaO5v-UFoJQzwWUjfgJ9M6qj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695982680</pqid></control><display><type>article</type><title>Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bahkaly, Ibrahim M ; El-Waheidi, Mahmoud M ; Jallouli, Chokri ; Batayneh, Awni T</creator><creatorcontrib>Bahkaly, Ibrahim M ; El-Waheidi, Mahmoud M ; Jallouli, Chokri ; Batayneh, Awni T</creatorcontrib><description>An electrical resistivity tomography survey has been conducted along the eastern coast of the Gulf of Aqaba in order to assess the salinity of the coastal shallow aquifer. The study area is extended from Ra’s Shikh Humayd to the town of Maqnah, northwest of Saudi Arabia. Eight electrical profiles were conducted using the Wenner–Schlumberger configuration. The total length of each profile was 360 m providing an expected maximum depth of penetration of about 50 m. All electrical profiles were conducted perpendicular to the coast and directed in the west–east direction. The inversion of the electrical data provided a clear two-dimensional image of the subsurface in the area that reflected the variations in the resistivity of the shallow aquifer system. The subsurface is composed of three layers: the upper layer corresponds to the dry alluvial and gravel deposits that have resistivity values in the range between 40 and 1400 Ω m. The second layer is the saturated zone of the alluvial sediments which represents the coastal aquifer in the study area. The resistivity value of the saturated zone is in the range of 0.15 to 25 Ω m. The lower layer in the subsurface stratification is the resistive bedrock which has resistivity values of more than 100 Ω m. It is composed of Pleistocene–Miocene sediments. The extension of saline water body has been mapped along all electrical profiles. The interpretation of the resistivity models shows that the salinity of the groundwater in the area is strongly related to three main factors: (1) the closeness to the coast; (2) closeness to wadis and low areas which allow saline surface water to infiltrate into the shallow aquifer and; (3) the abundance of gypsum outcrop in the vicinity. This last factor emphasizes the important effect of the local geological setting on the salinity of groundwater; the abundant supply of leached gypsum contributes to the salinity of the shallow aquifer.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-015-4195-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquifer systems ; Aquifers ; bedrock ; Biogeosciences ; case studies ; Coastal ; Coastal aquifers ; Coastal environments ; Coastal plains ; Coasts ; Earth and Environmental Science ; Earth Sciences ; electrical resistance ; Electrical resistivity ; Environmental Science and Engineering ; Geochemistry ; Geology ; Glaciers ; Gravel ; Groundwater ; Gypsum ; Hydrology ; Hydrology/Water Resources ; Mathematical models ; Miocene ; Original Article ; Pleistocene ; Saline water ; Salinity ; Sediments ; Surface water ; surveys ; Terrestrial Pollution ; tomography ; Water bodies ; water salinity</subject><ispartof>Environmental earth sciences, 2015-08, Vol.74 (3), p.2105-2114</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-d1e52c43677cd3cd09d50c197066018f32832f8b445c872417568a6d2cb4996c3</citedby><cites>FETCH-LOGICAL-a429t-d1e52c43677cd3cd09d50c197066018f32832f8b445c872417568a6d2cb4996c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-015-4195-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-015-4195-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bahkaly, Ibrahim M</creatorcontrib><creatorcontrib>El-Waheidi, Mahmoud M</creatorcontrib><creatorcontrib>Jallouli, Chokri</creatorcontrib><creatorcontrib>Batayneh, Awni T</creatorcontrib><title>Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>An electrical resistivity tomography survey has been conducted along the eastern coast of the Gulf of Aqaba in order to assess the salinity of the coastal shallow aquifer. The study area is extended from Ra’s Shikh Humayd to the town of Maqnah, northwest of Saudi Arabia. Eight electrical profiles were conducted using the Wenner–Schlumberger configuration. The total length of each profile was 360 m providing an expected maximum depth of penetration of about 50 m. All electrical profiles were conducted perpendicular to the coast and directed in the west–east direction. The inversion of the electrical data provided a clear two-dimensional image of the subsurface in the area that reflected the variations in the resistivity of the shallow aquifer system. The subsurface is composed of three layers: the upper layer corresponds to the dry alluvial and gravel deposits that have resistivity values in the range between 40 and 1400 Ω m. The second layer is the saturated zone of the alluvial sediments which represents the coastal aquifer in the study area. The resistivity value of the saturated zone is in the range of 0.15 to 25 Ω m. The lower layer in the subsurface stratification is the resistive bedrock which has resistivity values of more than 100 Ω m. It is composed of Pleistocene–Miocene sediments. The extension of saline water body has been mapped along all electrical profiles. The interpretation of the resistivity models shows that the salinity of the groundwater in the area is strongly related to three main factors: (1) the closeness to the coast; (2) closeness to wadis and low areas which allow saline surface water to infiltrate into the shallow aquifer and; (3) the abundance of gypsum outcrop in the vicinity. This last factor emphasizes the important effect of the local geological setting on the salinity of groundwater; the abundant supply of leached gypsum contributes to the salinity of the shallow aquifer.</description><subject>Aquifer systems</subject><subject>Aquifers</subject><subject>bedrock</subject><subject>Biogeosciences</subject><subject>case studies</subject><subject>Coastal</subject><subject>Coastal aquifers</subject><subject>Coastal environments</subject><subject>Coastal plains</subject><subject>Coasts</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>electrical resistance</subject><subject>Electrical resistivity</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Glaciers</subject><subject>Gravel</subject><subject>Groundwater</subject><subject>Gypsum</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Mathematical models</subject><subject>Miocene</subject><subject>Original Article</subject><subject>Pleistocene</subject><subject>Saline water</subject><subject>Salinity</subject><subject>Sediments</subject><subject>Surface water</subject><subject>surveys</subject><subject>Terrestrial Pollution</subject><subject>tomography</subject><subject>Water bodies</subject><subject>water salinity</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc-KFDEQxhtRcNndB_BkwIsHW_OnO514G4ZVF1YEd_ccatLp6Sw9yUwqzTL7DD60GVpEPIh1qaL4fR9VfFX1itH3jNLuAzIuZVtT1tYN02399Kw6Y0rKWnKtn_-eFX1ZXSI-0FKCCU3lWfVjhegQdy5kEgeCI0xTfCRwmP3gEkGYfPD5SHwgeXRkdYANkHUEzDCR_QRlP6MPW3L1_Y7sXB5j_5EAsYCOYJ7748n1KxwCjCS5rY_hHQkx5fHRYXYpkFuYe09WCTYeLqoXA0zoLn_18-r-09Xd-kt98-3z9Xp1U0PDda575lpuGyG7zvbC9lT3LbVMd1RKytQguBJ8UJumaa3qeMO6ViqQPbebRmtpxXn1dvHdp3iYyyFm59G6aYLg4oyGdYLSptOt_g-UaqZ0J1VB3_yFPsQ5hfKIYbJ4KS4VLRRbKJsiYnKD2Se_g3Q0jJpTmmZJ05Q0zSlN81Q0fNFgYcPWpT-c_yF6vYgGiAa2yaO5v-UFoJQzwWUjfgJ9M6qj</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Bahkaly, Ibrahim M</creator><creator>El-Waheidi, Mahmoud M</creator><creator>Jallouli, Chokri</creator><creator>Batayneh, Awni T</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia</title><author>Bahkaly, Ibrahim M ; El-Waheidi, Mahmoud M ; Jallouli, Chokri ; Batayneh, Awni T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-d1e52c43677cd3cd09d50c197066018f32832f8b445c872417568a6d2cb4996c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aquifer systems</topic><topic>Aquifers</topic><topic>bedrock</topic><topic>Biogeosciences</topic><topic>case studies</topic><topic>Coastal</topic><topic>Coastal aquifers</topic><topic>Coastal environments</topic><topic>Coastal plains</topic><topic>Coasts</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>electrical resistance</topic><topic>Electrical resistivity</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Glaciers</topic><topic>Gravel</topic><topic>Groundwater</topic><topic>Gypsum</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Mathematical models</topic><topic>Miocene</topic><topic>Original Article</topic><topic>Pleistocene</topic><topic>Saline water</topic><topic>Salinity</topic><topic>Sediments</topic><topic>Surface water</topic><topic>surveys</topic><topic>Terrestrial Pollution</topic><topic>tomography</topic><topic>Water bodies</topic><topic>water salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahkaly, Ibrahim M</creatorcontrib><creatorcontrib>El-Waheidi, Mahmoud M</creatorcontrib><creatorcontrib>Jallouli, Chokri</creatorcontrib><creatorcontrib>Batayneh, Awni T</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahkaly, Ibrahim M</au><au>El-Waheidi, Mahmoud M</au><au>Jallouli, Chokri</au><au>Batayneh, Awni T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>74</volume><issue>3</issue><spage>2105</spage><epage>2114</epage><pages>2105-2114</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>An electrical resistivity tomography survey has been conducted along the eastern coast of the Gulf of Aqaba in order to assess the salinity of the coastal shallow aquifer. The study area is extended from Ra’s Shikh Humayd to the town of Maqnah, northwest of Saudi Arabia. Eight electrical profiles were conducted using the Wenner–Schlumberger configuration. The total length of each profile was 360 m providing an expected maximum depth of penetration of about 50 m. All electrical profiles were conducted perpendicular to the coast and directed in the west–east direction. The inversion of the electrical data provided a clear two-dimensional image of the subsurface in the area that reflected the variations in the resistivity of the shallow aquifer system. The subsurface is composed of three layers: the upper layer corresponds to the dry alluvial and gravel deposits that have resistivity values in the range between 40 and 1400 Ω m. The second layer is the saturated zone of the alluvial sediments which represents the coastal aquifer in the study area. The resistivity value of the saturated zone is in the range of 0.15 to 25 Ω m. The lower layer in the subsurface stratification is the resistive bedrock which has resistivity values of more than 100 Ω m. It is composed of Pleistocene–Miocene sediments. The extension of saline water body has been mapped along all electrical profiles. The interpretation of the resistivity models shows that the salinity of the groundwater in the area is strongly related to three main factors: (1) the closeness to the coast; (2) closeness to wadis and low areas which allow saline surface water to infiltrate into the shallow aquifer and; (3) the abundance of gypsum outcrop in the vicinity. This last factor emphasizes the important effect of the local geological setting on the salinity of groundwater; the abundant supply of leached gypsum contributes to the salinity of the shallow aquifer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-015-4195-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2015-08, Vol.74 (3), p.2105-2114
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_miscellaneous_1730047959
source SpringerLink Journals - AutoHoldings
subjects Aquifer systems
Aquifers
bedrock
Biogeosciences
case studies
Coastal
Coastal aquifers
Coastal environments
Coastal plains
Coasts
Earth and Environmental Science
Earth Sciences
electrical resistance
Electrical resistivity
Environmental Science and Engineering
Geochemistry
Geology
Glaciers
Gravel
Groundwater
Gypsum
Hydrology
Hydrology/Water Resources
Mathematical models
Miocene
Original Article
Pleistocene
Saline water
Salinity
Sediments
Surface water
surveys
Terrestrial Pollution
tomography
Water bodies
water salinity
title Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: a case study of Maqnah region, northwestern Saudi Arabia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20shallow%20aquifer%20salinity%20in%20the%20Aqaba%20Coastal%20plain%20using%20ERT%20method:%20a%20case%20study%20of%20Maqnah%20region,%20northwestern%20Saudi%20Arabia&rft.jtitle=Environmental%20earth%20sciences&rft.au=Bahkaly,%20Ibrahim%20M&rft.date=2015-08-01&rft.volume=74&rft.issue=3&rft.spage=2105&rft.epage=2114&rft.pages=2105-2114&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-015-4195-z&rft_dat=%3Cproquest_cross%3E1730047959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695982680&rft_id=info:pmid/&rfr_iscdi=true