Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay

In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPON...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443
Hauptverfasser: Tan, Yun, Wu, Ronglan, Li, Huili, Ren, Wenchen, Du, Juan, Xu, Shimei, Wang, Jide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 21
container_start_page 4426
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 3
creator Tan, Yun
Wu, Ronglan
Li, Huili
Ren, Wenchen
Du, Juan
Xu, Shimei
Wang, Jide
description In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials. Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.
doi_str_mv 10.1039/c5tb00506j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730043492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387651423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0Eggq6sIPMhpACfjSxO0LFU5VYisQWOX4khtQutjP0vye0pd3gljvp-92d7j4ATjG6xoiOb2SeKoRyVHzsgQHpi4zlmO9va_R-BIYxfqA-OC44HR2CI0pIQRgvBqC5b7VMwUporG5VZp3qpFawDkJZ7RKMKWhXpwZaB51wXvr5wkebNGyWKvhatzA1wXd1s-uRwcfYWvdpXQ29gbIVyxNwYEQb9XCTj8Hbw_1s8pRNXx-fJ7fTTNKCp6zClBFacayY1LkQmFJmVEUwKhSniLExwcygEVUIG4yQyAk1I0IxY7ziKqfH4HI9dxH8V6djKuc2St22wmnfxZJQzooc9y3_ophR1G8ajUmPXq3R1WlBm3IR7FyEZYlR-eNDOclndysfXnr4fDO3q-ZabdHfr_fA2RoIUW7VnZG9fvGXXi6Uod-YAJgK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730043492</pqid></control><display><type>article</type><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</creator><creatorcontrib>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</creatorcontrib><description>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials. Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c5tb00506j</identifier><identifier>PMID: 32262786</identifier><language>eng</language><publisher>England</publisher><subject>Compressive strength ; Crosslinking ; Density ; Electric fields ; Hydrogels ; Mechanical properties ; Nanostructure ; Strength</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</citedby><cites>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32262786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Wu, Ronglan</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Ren, Wenchen</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Xu, Shimei</creatorcontrib><creatorcontrib>Wang, Jide</creatorcontrib><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials. Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</description><subject>Compressive strength</subject><subject>Crosslinking</subject><subject>Density</subject><subject>Electric fields</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Strength</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0Eggq6sIPMhpACfjSxO0LFU5VYisQWOX4khtQutjP0vye0pd3gljvp-92d7j4ATjG6xoiOb2SeKoRyVHzsgQHpi4zlmO9va_R-BIYxfqA-OC44HR2CI0pIQRgvBqC5b7VMwUporG5VZp3qpFawDkJZ7RKMKWhXpwZaB51wXvr5wkebNGyWKvhatzA1wXd1s-uRwcfYWvdpXQ29gbIVyxNwYEQb9XCTj8Hbw_1s8pRNXx-fJ7fTTNKCp6zClBFacayY1LkQmFJmVEUwKhSniLExwcygEVUIG4yQyAk1I0IxY7ziKqfH4HI9dxH8V6djKuc2St22wmnfxZJQzooc9y3_ophR1G8ajUmPXq3R1WlBm3IR7FyEZYlR-eNDOclndysfXnr4fDO3q-ZabdHfr_fA2RoIUW7VnZG9fvGXXi6Uod-YAJgK</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Tan, Yun</creator><creator>Wu, Ronglan</creator><creator>Li, Huili</creator><creator>Ren, Wenchen</creator><creator>Du, Juan</creator><creator>Xu, Shimei</creator><creator>Wang, Jide</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20150607</creationdate><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><author>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressive strength</topic><topic>Crosslinking</topic><topic>Density</topic><topic>Electric fields</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Wu, Ronglan</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Ren, Wenchen</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Xu, Shimei</creatorcontrib><creatorcontrib>Wang, Jide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yun</au><au>Wu, Ronglan</au><au>Li, Huili</au><au>Ren, Wenchen</au><au>Du, Juan</au><au>Xu, Shimei</au><au>Wang, Jide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>3</volume><issue>21</issue><spage>4426</spage><epage>443</epage><pages>4426-443</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials. Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</abstract><cop>England</cop><pmid>32262786</pmid><doi>10.1039/c5tb00506j</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_miscellaneous_1730043492
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Compressive strength
Crosslinking
Density
Electric fields
Hydrogels
Mechanical properties
Nanostructure
Strength
title Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field-induced%20gradient%20strength%20in%20nanocomposite%20hydrogel%20through%20gradient%20crosslinking%20of%20clay&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Tan,%20Yun&rft.date=2015-06-07&rft.volume=3&rft.issue=21&rft.spage=4426&rft.epage=443&rft.pages=4426-443&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c5tb00506j&rft_dat=%3Cproquest_pubme%3E2387651423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730043492&rft_id=info:pmid/32262786&rfr_iscdi=true