Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay
In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the in situ polymerization of acrylamide (Am) and N , N -dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPON...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | 21 |
container_start_page | 4426 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 3 |
creator | Tan, Yun Wu, Ronglan Li, Huili Ren, Wenchen Du, Juan Xu, Shimei Wang, Jide |
description | In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the
in situ
polymerization of acrylamide (Am) and
N
,
N
-dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials.
Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization. |
doi_str_mv | 10.1039/c5tb00506j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730043492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387651423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0Eggq6sIPMhpACfjSxO0LFU5VYisQWOX4khtQutjP0vye0pd3gljvp-92d7j4ATjG6xoiOb2SeKoRyVHzsgQHpi4zlmO9va_R-BIYxfqA-OC44HR2CI0pIQRgvBqC5b7VMwUporG5VZp3qpFawDkJZ7RKMKWhXpwZaB51wXvr5wkebNGyWKvhatzA1wXd1s-uRwcfYWvdpXQ29gbIVyxNwYEQb9XCTj8Hbw_1s8pRNXx-fJ7fTTNKCp6zClBFacayY1LkQmFJmVEUwKhSniLExwcygEVUIG4yQyAk1I0IxY7ziKqfH4HI9dxH8V6djKuc2St22wmnfxZJQzooc9y3_ophR1G8ajUmPXq3R1WlBm3IR7FyEZYlR-eNDOclndysfXnr4fDO3q-ZabdHfr_fA2RoIUW7VnZG9fvGXXi6Uod-YAJgK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730043492</pqid></control><display><type>article</type><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</creator><creatorcontrib>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</creatorcontrib><description>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the
in situ
polymerization of acrylamide (Am) and
N
,
N
-dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials.
Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c5tb00506j</identifier><identifier>PMID: 32262786</identifier><language>eng</language><publisher>England</publisher><subject>Compressive strength ; Crosslinking ; Density ; Electric fields ; Hydrogels ; Mechanical properties ; Nanostructure ; Strength</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</citedby><cites>FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32262786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Wu, Ronglan</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Ren, Wenchen</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Xu, Shimei</creatorcontrib><creatorcontrib>Wang, Jide</creatorcontrib><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the
in situ
polymerization of acrylamide (Am) and
N
,
N
-dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials.
Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</description><subject>Compressive strength</subject><subject>Crosslinking</subject><subject>Density</subject><subject>Electric fields</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Strength</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0Eggq6sIPMhpACfjSxO0LFU5VYisQWOX4khtQutjP0vye0pd3gljvp-92d7j4ATjG6xoiOb2SeKoRyVHzsgQHpi4zlmO9va_R-BIYxfqA-OC44HR2CI0pIQRgvBqC5b7VMwUporG5VZp3qpFawDkJZ7RKMKWhXpwZaB51wXvr5wkebNGyWKvhatzA1wXd1s-uRwcfYWvdpXQ29gbIVyxNwYEQb9XCTj8Hbw_1s8pRNXx-fJ7fTTNKCp6zClBFacayY1LkQmFJmVEUwKhSniLExwcygEVUIG4yQyAk1I0IxY7ziKqfH4HI9dxH8V6djKuc2St22wmnfxZJQzooc9y3_ophR1G8ajUmPXq3R1WlBm3IR7FyEZYlR-eNDOclndysfXnr4fDO3q-ZabdHfr_fA2RoIUW7VnZG9fvGXXi6Uod-YAJgK</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Tan, Yun</creator><creator>Wu, Ronglan</creator><creator>Li, Huili</creator><creator>Ren, Wenchen</creator><creator>Du, Juan</creator><creator>Xu, Shimei</creator><creator>Wang, Jide</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20150607</creationdate><title>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</title><author>Tan, Yun ; Wu, Ronglan ; Li, Huili ; Ren, Wenchen ; Du, Juan ; Xu, Shimei ; Wang, Jide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b13723b81d7ce5aa1337fdb2106d830779217f043d01f100a523f4231778b8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressive strength</topic><topic>Crosslinking</topic><topic>Density</topic><topic>Electric fields</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Wu, Ronglan</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Ren, Wenchen</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Xu, Shimei</creatorcontrib><creatorcontrib>Wang, Jide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yun</au><au>Wu, Ronglan</au><au>Li, Huili</au><au>Ren, Wenchen</au><au>Du, Juan</au><au>Xu, Shimei</au><au>Wang, Jide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>3</volume><issue>21</issue><spage>4426</spage><epage>443</epage><pages>4426-443</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>In this paper, mechanically strong organic-inorganic nanocomposite (NC) gradient hydrogels were successfully prepared by the
in situ
polymerization of acrylamide (Am) and
N
,
N
-dimethyl aminoethyl methacrylate (DMAEMA) using an electrophoresis method. Due to its specific colloidal properties, LAPONITE® showed directional movement in direct-current (DC) electric field and thus formed a gradient distribution in the hydrogel. The concentration gradient of LAPONITE® was characterized by UV-vis absorption, FTIR and TGA. The network structures of lyophilized gradient hydrogels were observed from SEM images. The TEM morphology indicated that LAPONITE® had a good gradient dispersion in the NC gradient hydrogel. As a physical crosslinker, LAPONITE® can regulate the cross-linking density of the hydrogel, thus affecting its mechanical properties. The NC gradient hydrogel exhibited a high mechanical strength (a gradient tensile strength ranging from 43.4 to 135.3 kPa and a gradient compression strength ranging from 116 kPa to 1100 kPa, depending on the distance from the anode). This work provided a facile method to develop NC gradient hydrogels with improved mechanical performance. The NC gradient hydrogels can be used as potential candidates in the field of biological and chemical materials.
Nanocomposite gradient hydrogels with adjustable mechanical strength and network sizes were synthesized by electric field-induced gradient crosslinking polymerization.</abstract><cop>England</cop><pmid>32262786</pmid><doi>10.1039/c5tb00506j</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2015-06, Vol.3 (21), p.4426-443 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730043492 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Compressive strength Crosslinking Density Electric fields Hydrogels Mechanical properties Nanostructure Strength |
title | Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field-induced%20gradient%20strength%20in%20nanocomposite%20hydrogel%20through%20gradient%20crosslinking%20of%20clay&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Tan,%20Yun&rft.date=2015-06-07&rft.volume=3&rft.issue=21&rft.spage=4426&rft.epage=443&rft.pages=4426-443&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c5tb00506j&rft_dat=%3Cproquest_pubme%3E2387651423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730043492&rft_id=info:pmid/32262786&rfr_iscdi=true |