Amino Acid Oxidation Increases with Dietary Protein Content in Adult Neutered Male Cats as Measured Using [1-13C]Leucine and [15N2]Urea
Cats are unique among domestic animals in that they are obligate carnivores and have a high protein requirement. However, there are few data on protein turnover and amino acid (AA) metabolism in cats. The aim of this study was to examine the effects of dietary protein content on urea production and...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2015-11, Vol.145 (11), p.2471-2478 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cats are unique among domestic animals in that they are obligate carnivores and have a high protein requirement. However, there are few data on protein turnover and amino acid (AA) metabolism in cats.
The aim of this study was to examine the effects of dietary protein content on urea production and Leu metabolism in cats.
Eighteen neutered male cats (4.4 ± 0.11 kg body weight, aged 4.6 ± 0.41 y) fed to maintain body weight for 3 wk with 15%, 40%, or 65% metabolizable energy intake as crude protein (CP) had [1-(13)C]Leu administered in the fed state. Urea production was measured by the infusion of [(15)N2]urea. Leu flux, nonoxidative Leu disposal (NOLD; protein synthesis), Leu rate of appearance (Ra; protein degradation), and Leu oxidation were determined.
Urea production and Leu oxidation were both ∼ 3 times greater in cats fed 65% CP compared with those fed 15% CP, whereas those fed 40% CP were ∼ 1.6 times greater (P < 0.05). Leu flux was 1.9 and 1.3 times greater in cats fed 65% CP compared with those fed 15% and 40% CP (P < 0.001). Almost 39% of total Leu flux was oxidized by cats fed 15% CP, whereas this increased to 58% in cats fed 65% CP (P < 0.002). There were no differences for Ra, but cats fed 65% CP tended to have 30% greater NOLD (P = 0.09) and to be in positive protein balance (P = 0.08) compared with those fed 15% CP.
The high protein requirement of cats combined with a low rate of whole-body protein synthesis ensures that an obligate demand of AAs for energy or glucose (or both) can be met in an animal that evolved with a diet high in protein with very little or no carbohydrate. |
---|---|
ISSN: | 0022-3166 1541-6100 |
DOI: | 10.3945/jn.115.216275 |