A coupled "AB" system: Rogue waves and modulation instabilities
Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2015-10, Vol.25 (10), p.103113-103113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103113 |
---|---|
container_issue | 10 |
container_start_page | 103113 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 25 |
creator | Wu, C F Grimshaw, R H J Chow, K W Chan, H N |
description | Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted. |
doi_str_mv | 10.1063/1.4931708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1729352547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124097225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgitXqwj8goW50MTU373EjtfiCgiC6DpkkI1PmUSczSv-9U1pduLp38XE4HITOgEyBSHYNU54yUETvoSMgOk2U1HR_8wuegCBkhI5jXBJCgDJxiEZUCkqISo_Q7Qy7pl-VwePJ7G6C4zp2obrBr81HH_C3_QoR29rjqvF9abuiqXFRx85mRVl0RYgn6CC3ZQynuztG7w_3b_OnZPHy-DyfLRLHuO4Sn2ZaWplJYFY7Tq0FUNzmoIWSqbBu6Ja7TDrOAw8eMg25zAIEr3xOpGNjdLnNXbXNZx9iZ6oiulCWtg5NHw0omjJBBVcDvfhHl03f1kM7Q4FykipKxaCutsq1TYxtyM2qLSrbrg0Qs1nVgNmtOtjzXWKfVcH_yd8Z2Q8di29S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124097225</pqid></control><display><type>article</type><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</creator><creatorcontrib>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</creatorcontrib><description>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4931708</identifier><identifier>PMID: 26520079</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Baroclinic flow ; Baroclinic instability ; Computational fluid dynamics ; Criteria ; Dispersion ; Fluid flow ; Fluid mechanics ; Geophysics ; Interaction models ; Mathematical models ; Modulation ; Nonlinearity ; Parameters ; Polynomials</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103113-103113</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</citedby><cites>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</cites><orcidid>0000-0003-0917-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26520079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, C F</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><creatorcontrib>Chow, K W</creatorcontrib><creatorcontrib>Chan, H N</creatorcontrib><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</description><subject>Baroclinic flow</subject><subject>Baroclinic instability</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Dispersion</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Interaction models</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Nonlinearity</subject><subject>Parameters</subject><subject>Polynomials</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgitXqwj8goW50MTU373EjtfiCgiC6DpkkI1PmUSczSv-9U1pduLp38XE4HITOgEyBSHYNU54yUETvoSMgOk2U1HR_8wuegCBkhI5jXBJCgDJxiEZUCkqISo_Q7Qy7pl-VwePJ7G6C4zp2obrBr81HH_C3_QoR29rjqvF9abuiqXFRx85mRVl0RYgn6CC3ZQynuztG7w_3b_OnZPHy-DyfLRLHuO4Sn2ZaWplJYFY7Tq0FUNzmoIWSqbBu6Ja7TDrOAw8eMg25zAIEr3xOpGNjdLnNXbXNZx9iZ6oiulCWtg5NHw0omjJBBVcDvfhHl03f1kM7Q4FykipKxaCutsq1TYxtyM2qLSrbrg0Qs1nVgNmtOtjzXWKfVcH_yd8Z2Q8di29S</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Wu, C F</creator><creator>Grimshaw, R H J</creator><creator>Chow, K W</creator><creator>Chan, H N</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0917-3218</orcidid></search><sort><creationdate>201510</creationdate><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><author>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Baroclinic flow</topic><topic>Baroclinic instability</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Dispersion</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Interaction models</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Nonlinearity</topic><topic>Parameters</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, C F</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><creatorcontrib>Chow, K W</creatorcontrib><creatorcontrib>Chan, H N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, C F</au><au>Grimshaw, R H J</au><au>Chow, K W</au><au>Chan, H N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coupled "AB" system: Rogue waves and modulation instabilities</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-10</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>103113</spage><epage>103113</epage><pages>103113-103113</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26520079</pmid><doi>10.1063/1.4931708</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0917-3218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103113-103113 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1729352547 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Baroclinic flow Baroclinic instability Computational fluid dynamics Criteria Dispersion Fluid flow Fluid mechanics Geophysics Interaction models Mathematical models Modulation Nonlinearity Parameters Polynomials |
title | A coupled "AB" system: Rogue waves and modulation instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coupled%20%22AB%22%20system:%20Rogue%20waves%20and%20modulation%20instabilities&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wu,%20C%20F&rft.date=2015-10&rft.volume=25&rft.issue=10&rft.spage=103113&rft.epage=103113&rft.pages=103113-103113&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4931708&rft_dat=%3Cproquest_cross%3E2124097225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124097225&rft_id=info:pmid/26520079&rfr_iscdi=true |