A coupled "AB" system: Rogue waves and modulation instabilities

Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2015-10, Vol.25 (10), p.103113-103113
Hauptverfasser: Wu, C F, Grimshaw, R H J, Chow, K W, Chan, H N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103113
container_issue 10
container_start_page 103113
container_title Chaos (Woodbury, N.Y.)
container_volume 25
creator Wu, C F
Grimshaw, R H J
Chow, K W
Chan, H N
description Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.
doi_str_mv 10.1063/1.4931708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1729352547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124097225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgitXqwj8goW50MTU373EjtfiCgiC6DpkkI1PmUSczSv-9U1pduLp38XE4HITOgEyBSHYNU54yUETvoSMgOk2U1HR_8wuegCBkhI5jXBJCgDJxiEZUCkqISo_Q7Qy7pl-VwePJ7G6C4zp2obrBr81HH_C3_QoR29rjqvF9abuiqXFRx85mRVl0RYgn6CC3ZQynuztG7w_3b_OnZPHy-DyfLRLHuO4Sn2ZaWplJYFY7Tq0FUNzmoIWSqbBu6Ja7TDrOAw8eMg25zAIEr3xOpGNjdLnNXbXNZx9iZ6oiulCWtg5NHw0omjJBBVcDvfhHl03f1kM7Q4FykipKxaCutsq1TYxtyM2qLSrbrg0Qs1nVgNmtOtjzXWKfVcH_yd8Z2Q8di29S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124097225</pqid></control><display><type>article</type><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</creator><creatorcontrib>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</creatorcontrib><description>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4931708</identifier><identifier>PMID: 26520079</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Baroclinic flow ; Baroclinic instability ; Computational fluid dynamics ; Criteria ; Dispersion ; Fluid flow ; Fluid mechanics ; Geophysics ; Interaction models ; Mathematical models ; Modulation ; Nonlinearity ; Parameters ; Polynomials</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103113-103113</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</citedby><cites>FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</cites><orcidid>0000-0003-0917-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26520079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, C F</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><creatorcontrib>Chow, K W</creatorcontrib><creatorcontrib>Chan, H N</creatorcontrib><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</description><subject>Baroclinic flow</subject><subject>Baroclinic instability</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Dispersion</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Interaction models</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Nonlinearity</subject><subject>Parameters</subject><subject>Polynomials</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgitXqwj8goW50MTU373EjtfiCgiC6DpkkI1PmUSczSv-9U1pduLp38XE4HITOgEyBSHYNU54yUETvoSMgOk2U1HR_8wuegCBkhI5jXBJCgDJxiEZUCkqISo_Q7Qy7pl-VwePJ7G6C4zp2obrBr81HH_C3_QoR29rjqvF9abuiqXFRx85mRVl0RYgn6CC3ZQynuztG7w_3b_OnZPHy-DyfLRLHuO4Sn2ZaWplJYFY7Tq0FUNzmoIWSqbBu6Ja7TDrOAw8eMg25zAIEr3xOpGNjdLnNXbXNZx9iZ6oiulCWtg5NHw0omjJBBVcDvfhHl03f1kM7Q4FykipKxaCutsq1TYxtyM2qLSrbrg0Qs1nVgNmtOtjzXWKfVcH_yd8Z2Q8di29S</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Wu, C F</creator><creator>Grimshaw, R H J</creator><creator>Chow, K W</creator><creator>Chan, H N</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0917-3218</orcidid></search><sort><creationdate>201510</creationdate><title>A coupled "AB" system: Rogue waves and modulation instabilities</title><author>Wu, C F ; Grimshaw, R H J ; Chow, K W ; Chan, H N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d9b86a6b613a8c42aa1174af1857695ac000fcb6c44e4ed1b81f6be1ed7df06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Baroclinic flow</topic><topic>Baroclinic instability</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Dispersion</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Interaction models</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Nonlinearity</topic><topic>Parameters</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, C F</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><creatorcontrib>Chow, K W</creatorcontrib><creatorcontrib>Chan, H N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, C F</au><au>Grimshaw, R H J</au><au>Chow, K W</au><au>Chan, H N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coupled "AB" system: Rogue waves and modulation instabilities</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-10</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>103113</spage><epage>103113</epage><pages>103113-103113</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26520079</pmid><doi>10.1063/1.4931708</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0917-3218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103113-103113
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_1729352547
source AIP Journals Complete; Alma/SFX Local Collection
subjects Baroclinic flow
Baroclinic instability
Computational fluid dynamics
Criteria
Dispersion
Fluid flow
Fluid mechanics
Geophysics
Interaction models
Mathematical models
Modulation
Nonlinearity
Parameters
Polynomials
title A coupled "AB" system: Rogue waves and modulation instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coupled%20%22AB%22%20system:%20Rogue%20waves%20and%20modulation%20instabilities&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wu,%20C%20F&rft.date=2015-10&rft.volume=25&rft.issue=10&rft.spage=103113&rft.epage=103113&rft.pages=103113-103113&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4931708&rft_dat=%3Cproquest_cross%3E2124097225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124097225&rft_id=info:pmid/26520079&rfr_iscdi=true