Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods
Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading product...
Gespeichert in:
Veröffentlicht in: | International journal of food microbiology 2016-01, Vol.216, p.79-90 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 79 |
container_title | International journal of food microbiology |
container_volume | 216 |
creator | Lambertini, Elisabetta Buchanan, Robert L. Narrod, Clare Ford, Randall M. Baker, Robert C. Pradhan, Abani K. |
description | Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards.
•Salmonella can contaminate pet food ingredients or the production environment.•Inadequate application of therma |
doi_str_mv | 10.1016/j.ijfoodmicro.2015.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728671533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168160515301185</els_id><sourcerecordid>1728671533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-4a3f7755fc4fd2d2917ed0ae5928c9bb34a6c92c09e4b8631f910b3d9d5f68a03</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwC8js2CTYcV5eooqXVAkhYIksxx6rrpq42E6BvyehgFiyms25M3MPQmeUpJTQ8mKV2pVxTrdWeZdmhBYp4SkhxR6a0rriCctLso-mA1sntCTFBB2FsCIDwRg5RJOszGleF_UUvTz0sos2ymi3gGUIEEILXcTO4GXfyg7LTuMNRAzvGxd6Dzg6_CjXretgvZZjxCkrI2j8ZuMSa__xhY__hWN0YOQ6wMn3nKHn66un-W2yuL-5m18uEsWqKia5ZKaqisKo3OhMZ5xWoImEgme14k3DclkqninCIW_qklHDKWmY5rowZS0Jm6Hz3d6Nd689hChaG9T4XweuD4JWWV1WdGg_oHyHDupC8GDExttW-g9BiRjtipX4Y1eMdgXhYnQ3Q6ffZ_qmBf2b_NE5APMdAEPZrQUvgrLQKdDWg4pCO_uPM580OJMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728671533</pqid></control><display><type>article</type><title>Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lambertini, Elisabetta ; Buchanan, Robert L. ; Narrod, Clare ; Ford, Randall M. ; Baker, Robert C. ; Pradhan, Abani K.</creator><creatorcontrib>Lambertini, Elisabetta ; Buchanan, Robert L. ; Narrod, Clare ; Ford, Randall M. ; Baker, Robert C. ; Pradhan, Abani K.</creatorcontrib><description>Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards.
•Salmonella can contaminate pet food ingredients or the production environment.•Inadequate application of thermal processes can lead to contamination persistence.•Contaminated ingredients, if by-passing heat treatments, can lead to exposure.•Recontamination after extrusion can also lead to exposure.•Consumer handling practices can significantly increase or reduce exposure.</description><identifier>ISSN: 0168-1605</identifier><identifier>EISSN: 1879-3460</identifier><identifier>DOI: 10.1016/j.ijfoodmicro.2015.09.005</identifier><identifier>PMID: 26414858</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Animal Feed - microbiology ; Animals ; Child ; Disease Outbreaks ; Dry pet food ; Food Handling - methods ; Food Microbiology ; Household handling ; Humans ; Low moisture ; Risk assessment ; Salmonella - isolation & purification ; Salmonella Infections - microbiology ; Zoonoses - microbiology ; Zoonotic pathogens</subject><ispartof>International journal of food microbiology, 2016-01, Vol.216, p.79-90</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-4a3f7755fc4fd2d2917ed0ae5928c9bb34a6c92c09e4b8631f910b3d9d5f68a03</citedby><cites>FETCH-LOGICAL-c377t-4a3f7755fc4fd2d2917ed0ae5928c9bb34a6c92c09e4b8631f910b3d9d5f68a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26414858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambertini, Elisabetta</creatorcontrib><creatorcontrib>Buchanan, Robert L.</creatorcontrib><creatorcontrib>Narrod, Clare</creatorcontrib><creatorcontrib>Ford, Randall M.</creatorcontrib><creatorcontrib>Baker, Robert C.</creatorcontrib><creatorcontrib>Pradhan, Abani K.</creatorcontrib><title>Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods</title><title>International journal of food microbiology</title><addtitle>Int J Food Microbiol</addtitle><description>Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards.
•Salmonella can contaminate pet food ingredients or the production environment.•Inadequate application of thermal processes can lead to contamination persistence.•Contaminated ingredients, if by-passing heat treatments, can lead to exposure.•Recontamination after extrusion can also lead to exposure.•Consumer handling practices can significantly increase or reduce exposure.</description><subject>Adult</subject><subject>Animal Feed - microbiology</subject><subject>Animals</subject><subject>Child</subject><subject>Disease Outbreaks</subject><subject>Dry pet food</subject><subject>Food Handling - methods</subject><subject>Food Microbiology</subject><subject>Household handling</subject><subject>Humans</subject><subject>Low moisture</subject><subject>Risk assessment</subject><subject>Salmonella - isolation & purification</subject><subject>Salmonella Infections - microbiology</subject><subject>Zoonoses - microbiology</subject><subject>Zoonotic pathogens</subject><issn>0168-1605</issn><issn>1879-3460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EoqXwC8js2CTYcV5eooqXVAkhYIksxx6rrpq42E6BvyehgFiyms25M3MPQmeUpJTQ8mKV2pVxTrdWeZdmhBYp4SkhxR6a0rriCctLso-mA1sntCTFBB2FsCIDwRg5RJOszGleF_UUvTz0sos2ymi3gGUIEEILXcTO4GXfyg7LTuMNRAzvGxd6Dzg6_CjXretgvZZjxCkrI2j8ZuMSa__xhY__hWN0YOQ6wMn3nKHn66un-W2yuL-5m18uEsWqKia5ZKaqisKo3OhMZ5xWoImEgme14k3DclkqninCIW_qklHDKWmY5rowZS0Jm6Hz3d6Nd689hChaG9T4XweuD4JWWV1WdGg_oHyHDupC8GDExttW-g9BiRjtipX4Y1eMdgXhYnQ3Q6ffZ_qmBf2b_NE5APMdAEPZrQUvgrLQKdDWg4pCO_uPM580OJMn</recordid><startdate>20160104</startdate><enddate>20160104</enddate><creator>Lambertini, Elisabetta</creator><creator>Buchanan, Robert L.</creator><creator>Narrod, Clare</creator><creator>Ford, Randall M.</creator><creator>Baker, Robert C.</creator><creator>Pradhan, Abani K.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160104</creationdate><title>Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods</title><author>Lambertini, Elisabetta ; Buchanan, Robert L. ; Narrod, Clare ; Ford, Randall M. ; Baker, Robert C. ; Pradhan, Abani K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-4a3f7755fc4fd2d2917ed0ae5928c9bb34a6c92c09e4b8631f910b3d9d5f68a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Animal Feed - microbiology</topic><topic>Animals</topic><topic>Child</topic><topic>Disease Outbreaks</topic><topic>Dry pet food</topic><topic>Food Handling - methods</topic><topic>Food Microbiology</topic><topic>Household handling</topic><topic>Humans</topic><topic>Low moisture</topic><topic>Risk assessment</topic><topic>Salmonella - isolation & purification</topic><topic>Salmonella Infections - microbiology</topic><topic>Zoonoses - microbiology</topic><topic>Zoonotic pathogens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambertini, Elisabetta</creatorcontrib><creatorcontrib>Buchanan, Robert L.</creatorcontrib><creatorcontrib>Narrod, Clare</creatorcontrib><creatorcontrib>Ford, Randall M.</creatorcontrib><creatorcontrib>Baker, Robert C.</creatorcontrib><creatorcontrib>Pradhan, Abani K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of food microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambertini, Elisabetta</au><au>Buchanan, Robert L.</au><au>Narrod, Clare</au><au>Ford, Randall M.</au><au>Baker, Robert C.</au><au>Pradhan, Abani K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods</atitle><jtitle>International journal of food microbiology</jtitle><addtitle>Int J Food Microbiol</addtitle><date>2016-01-04</date><risdate>2016</risdate><volume>216</volume><spage>79</spage><epage>90</epage><pages>79-90</pages><issn>0168-1605</issn><eissn>1879-3460</eissn><abstract>Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards.
•Salmonella can contaminate pet food ingredients or the production environment.•Inadequate application of thermal processes can lead to contamination persistence.•Contaminated ingredients, if by-passing heat treatments, can lead to exposure.•Recontamination after extrusion can also lead to exposure.•Consumer handling practices can significantly increase or reduce exposure.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26414858</pmid><doi>10.1016/j.ijfoodmicro.2015.09.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1605 |
ispartof | International journal of food microbiology, 2016-01, Vol.216, p.79-90 |
issn | 0168-1605 1879-3460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728671533 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult Animal Feed - microbiology Animals Child Disease Outbreaks Dry pet food Food Handling - methods Food Microbiology Household handling Humans Low moisture Risk assessment Salmonella - isolation & purification Salmonella Infections - microbiology Zoonoses - microbiology Zoonotic pathogens |
title | Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20assessment%20of%20human%20and%20pet%20exposure%20to%20Salmonella%20associated%20with%20dry%20pet%20foods&rft.jtitle=International%20journal%20of%20food%20microbiology&rft.au=Lambertini,%20Elisabetta&rft.date=2016-01-04&rft.volume=216&rft.spage=79&rft.epage=90&rft.pages=79-90&rft.issn=0168-1605&rft.eissn=1879-3460&rft_id=info:doi/10.1016/j.ijfoodmicro.2015.09.005&rft_dat=%3Cproquest_cross%3E1728671533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728671533&rft_id=info:pmid/26414858&rft_els_id=S0168160515301185&rfr_iscdi=true |