Testing for treatment-biomarker interaction based on local partial-likelihood
In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the l...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2015-11, Vol.34 (27), p.3516-3530 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3530 |
---|---|
container_issue | 27 |
container_start_page | 3516 |
container_title | Statistics in medicine |
container_volume | 34 |
creator | Liu, Yicong Jiang, Wenyu Chen, Bingshu E. |
description | In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.6563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728668270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1728668270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMoOqfgL5CCL7505mNt0kcZOsVNERUfQ5reambazKRD9-_NcE4QfLm5D4dD7kHoiOABwZieBdMM8ixnW6hHcMFTTDOxjXqYcp7mnGR7aD-EGcaEZJTvoj2aYzHktOih6SOEzrQvSe180nlQXQNtl5bGNcq_gU9M24FXujOuTUoVoEriYp1WNpkr3xllU2vewJpX56oDtFMrG-Bw_fbR0-XF4-gqndyNr0fnk1RnlLGUsqpkNRHAFM9qzrUusooNSzxUBZQYasXyutSVplSreISCEnScouJCMKJYH51-e-fevS_iBbIxQYO1qgW3CJJwKvJcUI4jevIHnbmFb-PvVlQhhkRQ8ivU3oXgoZZzb2KBpSRYrhLLmFiuEkf0eC1clA1UG_CnaQTSb-DDWFj-K5IP19O1cM2b0MHnho_5Zc4Zz-Tz7VhOR5zcj8Y3csK-ALBNlQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729841821</pqid></control><display><type>article</type><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</creator><creatorcontrib>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</creatorcontrib><description>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6563</identifier><identifier>PMID: 26084729</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biomarkers ; bootstrap ; Breast Neoplasms - drug therapy ; Clinical trials ; Data analysis ; Female ; Humans ; Likelihood Functions ; Male ; Medical statistics ; Medical treatment ; nonparametric estimation ; Precision Medicine - statistics & numerical data ; Prostatic Neoplasms - drug therapy ; Survival Analysis ; Treatment Outcome ; treatment-covariate interaction</subject><ispartof>Statistics in medicine, 2015-11, Vol.34 (27), p.3516-3530</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Nov 30, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</citedby><cites>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6563$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6563$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26084729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yicong</creatorcontrib><creatorcontrib>Jiang, Wenyu</creatorcontrib><creatorcontrib>Chen, Bingshu E.</creatorcontrib><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Biomarkers</subject><subject>bootstrap</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Medical statistics</subject><subject>Medical treatment</subject><subject>nonparametric estimation</subject><subject>Precision Medicine - statistics & numerical data</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Survival Analysis</subject><subject>Treatment Outcome</subject><subject>treatment-covariate interaction</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUQIMoOqfgL5CCL7505mNt0kcZOsVNERUfQ5reambazKRD9-_NcE4QfLm5D4dD7kHoiOABwZieBdMM8ixnW6hHcMFTTDOxjXqYcp7mnGR7aD-EGcaEZJTvoj2aYzHktOih6SOEzrQvSe180nlQXQNtl5bGNcq_gU9M24FXujOuTUoVoEriYp1WNpkr3xllU2vewJpX56oDtFMrG-Bw_fbR0-XF4-gqndyNr0fnk1RnlLGUsqpkNRHAFM9qzrUusooNSzxUBZQYasXyutSVplSreISCEnScouJCMKJYH51-e-fevS_iBbIxQYO1qgW3CJJwKvJcUI4jevIHnbmFb-PvVlQhhkRQ8ivU3oXgoZZzb2KBpSRYrhLLmFiuEkf0eC1clA1UG_CnaQTSb-DDWFj-K5IP19O1cM2b0MHnho_5Zc4Zz-Tz7VhOR5zcj8Y3csK-ALBNlQs</recordid><startdate>20151130</startdate><enddate>20151130</enddate><creator>Liu, Yicong</creator><creator>Jiang, Wenyu</creator><creator>Chen, Bingshu E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20151130</creationdate><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><author>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomarkers</topic><topic>bootstrap</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Medical statistics</topic><topic>Medical treatment</topic><topic>nonparametric estimation</topic><topic>Precision Medicine - statistics & numerical data</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Survival Analysis</topic><topic>Treatment Outcome</topic><topic>treatment-covariate interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yicong</creatorcontrib><creatorcontrib>Jiang, Wenyu</creatorcontrib><creatorcontrib>Chen, Bingshu E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yicong</au><au>Jiang, Wenyu</au><au>Chen, Bingshu E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for treatment-biomarker interaction based on local partial-likelihood</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2015-11-30</date><risdate>2015</risdate><volume>34</volume><issue>27</issue><spage>3516</spage><epage>3530</epage><pages>3516-3530</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26084729</pmid><doi>10.1002/sim.6563</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2015-11, Vol.34 (27), p.3516-3530 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728668270 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biomarkers bootstrap Breast Neoplasms - drug therapy Clinical trials Data analysis Female Humans Likelihood Functions Male Medical statistics Medical treatment nonparametric estimation Precision Medicine - statistics & numerical data Prostatic Neoplasms - drug therapy Survival Analysis Treatment Outcome treatment-covariate interaction |
title | Testing for treatment-biomarker interaction based on local partial-likelihood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20treatment-biomarker%20interaction%20based%20on%20local%20partial-likelihood&rft.jtitle=Statistics%20in%20medicine&rft.au=Liu,%20Yicong&rft.date=2015-11-30&rft.volume=34&rft.issue=27&rft.spage=3516&rft.epage=3530&rft.pages=3516-3530&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6563&rft_dat=%3Cproquest_cross%3E1728668270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729841821&rft_id=info:pmid/26084729&rfr_iscdi=true |