Testing for treatment-biomarker interaction based on local partial-likelihood

In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2015-11, Vol.34 (27), p.3516-3530
Hauptverfasser: Liu, Yicong, Jiang, Wenyu, Chen, Bingshu E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3530
container_issue 27
container_start_page 3516
container_title Statistics in medicine
container_volume 34
creator Liu, Yicong
Jiang, Wenyu
Chen, Bingshu E.
description In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.6563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728668270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1728668270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMoOqfgL5CCL7505mNt0kcZOsVNERUfQ5reambazKRD9-_NcE4QfLm5D4dD7kHoiOABwZieBdMM8ixnW6hHcMFTTDOxjXqYcp7mnGR7aD-EGcaEZJTvoj2aYzHktOih6SOEzrQvSe180nlQXQNtl5bGNcq_gU9M24FXujOuTUoVoEriYp1WNpkr3xllU2vewJpX56oDtFMrG-Bw_fbR0-XF4-gqndyNr0fnk1RnlLGUsqpkNRHAFM9qzrUusooNSzxUBZQYasXyutSVplSreISCEnScouJCMKJYH51-e-fevS_iBbIxQYO1qgW3CJJwKvJcUI4jevIHnbmFb-PvVlQhhkRQ8ivU3oXgoZZzb2KBpSRYrhLLmFiuEkf0eC1clA1UG_CnaQTSb-DDWFj-K5IP19O1cM2b0MHnho_5Zc4Zz-Tz7VhOR5zcj8Y3csK-ALBNlQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729841821</pqid></control><display><type>article</type><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</creator><creatorcontrib>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</creatorcontrib><description>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6563</identifier><identifier>PMID: 26084729</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biomarkers ; bootstrap ; Breast Neoplasms - drug therapy ; Clinical trials ; Data analysis ; Female ; Humans ; Likelihood Functions ; Male ; Medical statistics ; Medical treatment ; nonparametric estimation ; Precision Medicine - statistics &amp; numerical data ; Prostatic Neoplasms - drug therapy ; Survival Analysis ; Treatment Outcome ; treatment-covariate interaction</subject><ispartof>Statistics in medicine, 2015-11, Vol.34 (27), p.3516-3530</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Nov 30, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</citedby><cites>FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6563$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6563$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26084729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yicong</creatorcontrib><creatorcontrib>Jiang, Wenyu</creatorcontrib><creatorcontrib>Chen, Bingshu E.</creatorcontrib><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Biomarkers</subject><subject>bootstrap</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Medical statistics</subject><subject>Medical treatment</subject><subject>nonparametric estimation</subject><subject>Precision Medicine - statistics &amp; numerical data</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Survival Analysis</subject><subject>Treatment Outcome</subject><subject>treatment-covariate interaction</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUQIMoOqfgL5CCL7505mNt0kcZOsVNERUfQ5reambazKRD9-_NcE4QfLm5D4dD7kHoiOABwZieBdMM8ixnW6hHcMFTTDOxjXqYcp7mnGR7aD-EGcaEZJTvoj2aYzHktOih6SOEzrQvSe180nlQXQNtl5bGNcq_gU9M24FXujOuTUoVoEriYp1WNpkr3xllU2vewJpX56oDtFMrG-Bw_fbR0-XF4-gqndyNr0fnk1RnlLGUsqpkNRHAFM9qzrUusooNSzxUBZQYasXyutSVplSreISCEnScouJCMKJYH51-e-fevS_iBbIxQYO1qgW3CJJwKvJcUI4jevIHnbmFb-PvVlQhhkRQ8ivU3oXgoZZzb2KBpSRYrhLLmFiuEkf0eC1clA1UG_CnaQTSb-DDWFj-K5IP19O1cM2b0MHnho_5Zc4Zz-Tz7VhOR5zcj8Y3csK-ALBNlQs</recordid><startdate>20151130</startdate><enddate>20151130</enddate><creator>Liu, Yicong</creator><creator>Jiang, Wenyu</creator><creator>Chen, Bingshu E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20151130</creationdate><title>Testing for treatment-biomarker interaction based on local partial-likelihood</title><author>Liu, Yicong ; Jiang, Wenyu ; Chen, Bingshu E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5233-23db3f18e3a75f77cc95d34b04a9eb0efa36fbcdc22ca027aebec7ae8d78831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomarkers</topic><topic>bootstrap</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Medical statistics</topic><topic>Medical treatment</topic><topic>nonparametric estimation</topic><topic>Precision Medicine - statistics &amp; numerical data</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Survival Analysis</topic><topic>Treatment Outcome</topic><topic>treatment-covariate interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yicong</creatorcontrib><creatorcontrib>Jiang, Wenyu</creatorcontrib><creatorcontrib>Chen, Bingshu E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yicong</au><au>Jiang, Wenyu</au><au>Chen, Bingshu E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for treatment-biomarker interaction based on local partial-likelihood</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2015-11-30</date><risdate>2015</risdate><volume>34</volume><issue>27</issue><spage>3516</spage><epage>3530</epage><pages>3516-3530</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>In clinical trials, patients with different biomarker features may respond differently to the new treatments or drugs. In personalized medicine, it is important to study the interaction between treatment and biomarkers in order to clearly identify patients that benefit from the treatment. With the local partial‐likelihood estimation (LPLE) method proposed by Fan J, Lin H, Zhou Y. Local partial‐likelihood estimation for lifetime data. The Annals of Statistics 2006; 34(1):290Ű325, the treatment effect can be modeled as a flexible function of the biomarker. In this paper, we propose a bootstrap test method for survival outcome data based on the LPLE, for assessing whether the treatment effect is a constant among all patients or varies as a function of the biomarker. The test method is called local partial‐likelihood bootstrap (LPLB) and is developed by bootstrapping the martingale residuals. The test statistic measures the amount of change in treatment effects across the entire range of the biomarker and is derived based on asymptotic theories for martingales. The LPLB method is nonparametric and is shown in simulations and data analysis examples to be flexible enough to identify treatment effects in a biomarker‐defined subset and more powerful to detect treatment‐biomarker interaction of complex forms than the Cox regression model with a simple interaction. We use data from a breast cancer and a prostate cancer clinical trial to illustrate the proposed LPLB test. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26084729</pmid><doi>10.1002/sim.6563</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2015-11, Vol.34 (27), p.3516-3530
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1728668270
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biomarkers
bootstrap
Breast Neoplasms - drug therapy
Clinical trials
Data analysis
Female
Humans
Likelihood Functions
Male
Medical statistics
Medical treatment
nonparametric estimation
Precision Medicine - statistics & numerical data
Prostatic Neoplasms - drug therapy
Survival Analysis
Treatment Outcome
treatment-covariate interaction
title Testing for treatment-biomarker interaction based on local partial-likelihood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20treatment-biomarker%20interaction%20based%20on%20local%20partial-likelihood&rft.jtitle=Statistics%20in%20medicine&rft.au=Liu,%20Yicong&rft.date=2015-11-30&rft.volume=34&rft.issue=27&rft.spage=3516&rft.epage=3530&rft.pages=3516-3530&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6563&rft_dat=%3Cproquest_cross%3E1728668270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729841821&rft_id=info:pmid/26084729&rfr_iscdi=true