Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT
The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode mat...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (43), p.28837-28843 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28843 |
---|---|
container_issue | 43 |
container_start_page | 28837 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Allcorn, Eric Kim, Sang Ok Manthiram, Arumugam |
description | The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode materials and is applied here to antimony-based anodes for lithium-ion batteries. Like other alloy anodes, antimony suffers from large volume change and a short cycle life, so GITT is also applied to determine the effects on lithium diffusivity of antimony intermetallics and composite electrodes designed to mitigate these issues. Pure antimony is measured to have a diffusion coefficient of 4.0 × 10
−9
cm
2
s
−1
, in agreement with previously measured values. The intermetallics NiSb, FeSb, and FeSb
2
all demonstrate diffusivity values within an order of magnitude of antimony, while Cu
2
Sb shows roughly an order of magnitude improvement due to the persistence of the Cu
2
Sb phase during cycling. The composite electrode FeSb-TiC is shown to offer significant enhancement of the diffusion coefficient positively correlated with higher concentrations of TiC in the composite up to a maximum value of 1.9 × 10
−7
cm
2
s
−1
at 60 wt% TiC, nearly two full orders of magnitude greater than that of pure antimony.
The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. |
doi_str_mv | 10.1039/c5cp04023j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728668195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816072524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ed388b31805a792700cf5a9417713176952b9152b97a7c4ab3462285f83bac313</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTi3el3kSo5meTHqW4ORkoWM8lTVPM6C-bVOh_b-bmvOklebz3yTvkC8A5grcIkvhOMdVBCjFZH4ApohEJYyjo4b7m0QScWLuGECKGyDGY4Ij6IuZToFfGvZuhDgpTloM1n8aNgWkC2ThTt80Y5tLqwnec7mvtZFUZ5YdFMNeveZiaJFBt3bXWOO3bbaFtIG1Qa2mH3r_Lx2CxTNNTcFTKyuqz3T0Db_OHNHkMV8-LZXK_ChXlzIW6IELkBAnIJI8xh1CVTMYUcY4I4lHMcB6jzcElV1TmhEYYC1YKkktFEJmB6-3erm8_Bm1dVhurdFXJRreDzZBAEeSYYfo_5VhEkUAx8_RmS1XfWtvrMut6U8t-zBDMNglkCUtevhN48vhyt3fIa13s6c-Xe3C1Bb1V--lvhFlXlN5c_GXIF9fhlIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728668195</pqid></control><display><type>article</type><title>Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Allcorn, Eric ; Kim, Sang Ok ; Manthiram, Arumugam</creator><creatorcontrib>Allcorn, Eric ; Kim, Sang Ok ; Manthiram, Arumugam</creatorcontrib><description>The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode materials and is applied here to antimony-based anodes for lithium-ion batteries. Like other alloy anodes, antimony suffers from large volume change and a short cycle life, so GITT is also applied to determine the effects on lithium diffusivity of antimony intermetallics and composite electrodes designed to mitigate these issues. Pure antimony is measured to have a diffusion coefficient of 4.0 × 10
−9
cm
2
s
−1
, in agreement with previously measured values. The intermetallics NiSb, FeSb, and FeSb
2
all demonstrate diffusivity values within an order of magnitude of antimony, while Cu
2
Sb shows roughly an order of magnitude improvement due to the persistence of the Cu
2
Sb phase during cycling. The composite electrode FeSb-TiC is shown to offer significant enhancement of the diffusion coefficient positively correlated with higher concentrations of TiC in the composite up to a maximum value of 1.9 × 10
−7
cm
2
s
−1
at 60 wt% TiC, nearly two full orders of magnitude greater than that of pure antimony.
The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp04023j</identifier><identifier>PMID: 26451397</identifier><language>eng</language><publisher>England</publisher><subject>Anodes ; Antimony ; Antimony base alloys ; Diffusion coefficient ; Diffusivity ; Electrodes ; Intermetallics ; Lithium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (43), p.28837-28843</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ed388b31805a792700cf5a9417713176952b9152b97a7c4ab3462285f83bac313</citedby><cites>FETCH-LOGICAL-c475t-ed388b31805a792700cf5a9417713176952b9152b97a7c4ab3462285f83bac313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26451397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allcorn, Eric</creatorcontrib><creatorcontrib>Kim, Sang Ok</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><title>Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode materials and is applied here to antimony-based anodes for lithium-ion batteries. Like other alloy anodes, antimony suffers from large volume change and a short cycle life, so GITT is also applied to determine the effects on lithium diffusivity of antimony intermetallics and composite electrodes designed to mitigate these issues. Pure antimony is measured to have a diffusion coefficient of 4.0 × 10
−9
cm
2
s
−1
, in agreement with previously measured values. The intermetallics NiSb, FeSb, and FeSb
2
all demonstrate diffusivity values within an order of magnitude of antimony, while Cu
2
Sb shows roughly an order of magnitude improvement due to the persistence of the Cu
2
Sb phase during cycling. The composite electrode FeSb-TiC is shown to offer significant enhancement of the diffusion coefficient positively correlated with higher concentrations of TiC in the composite up to a maximum value of 1.9 × 10
−7
cm
2
s
−1
at 60 wt% TiC, nearly two full orders of magnitude greater than that of pure antimony.
The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output.</description><subject>Anodes</subject><subject>Antimony</subject><subject>Antimony base alloys</subject><subject>Diffusion coefficient</subject><subject>Diffusivity</subject><subject>Electrodes</subject><subject>Intermetallics</subject><subject>Lithium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_AgipvTi3el3kSo5meTHqW4ORkoWM8lTVPM6C-bVOh_b-bmvOklebz3yTvkC8A5grcIkvhOMdVBCjFZH4ApohEJYyjo4b7m0QScWLuGECKGyDGY4Ij6IuZToFfGvZuhDgpTloM1n8aNgWkC2ThTt80Y5tLqwnec7mvtZFUZ5YdFMNeveZiaJFBt3bXWOO3bbaFtIG1Qa2mH3r_Lx2CxTNNTcFTKyuqz3T0Db_OHNHkMV8-LZXK_ChXlzIW6IELkBAnIJI8xh1CVTMYUcY4I4lHMcB6jzcElV1TmhEYYC1YKkktFEJmB6-3erm8_Bm1dVhurdFXJRreDzZBAEeSYYfo_5VhEkUAx8_RmS1XfWtvrMut6U8t-zBDMNglkCUtevhN48vhyt3fIa13s6c-Xe3C1Bb1V--lvhFlXlN5c_GXIF9fhlIo</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Allcorn, Eric</creator><creator>Kim, Sang Ok</creator><creator>Manthiram, Arumugam</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT</title><author>Allcorn, Eric ; Kim, Sang Ok ; Manthiram, Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ed388b31805a792700cf5a9417713176952b9152b97a7c4ab3462285f83bac313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Antimony</topic><topic>Antimony base alloys</topic><topic>Diffusion coefficient</topic><topic>Diffusivity</topic><topic>Electrodes</topic><topic>Intermetallics</topic><topic>Lithium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allcorn, Eric</creatorcontrib><creatorcontrib>Kim, Sang Ok</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allcorn, Eric</au><au>Kim, Sang Ok</au><au>Manthiram, Arumugam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>17</volume><issue>43</issue><spage>28837</spage><epage>28843</epage><pages>28837-28843</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode materials and is applied here to antimony-based anodes for lithium-ion batteries. Like other alloy anodes, antimony suffers from large volume change and a short cycle life, so GITT is also applied to determine the effects on lithium diffusivity of antimony intermetallics and composite electrodes designed to mitigate these issues. Pure antimony is measured to have a diffusion coefficient of 4.0 × 10
−9
cm
2
s
−1
, in agreement with previously measured values. The intermetallics NiSb, FeSb, and FeSb
2
all demonstrate diffusivity values within an order of magnitude of antimony, while Cu
2
Sb shows roughly an order of magnitude improvement due to the persistence of the Cu
2
Sb phase during cycling. The composite electrode FeSb-TiC is shown to offer significant enhancement of the diffusion coefficient positively correlated with higher concentrations of TiC in the composite up to a maximum value of 1.9 × 10
−7
cm
2
s
−1
at 60 wt% TiC, nearly two full orders of magnitude greater than that of pure antimony.
The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output.</abstract><cop>England</cop><pmid>26451397</pmid><doi>10.1039/c5cp04023j</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (43), p.28837-28843 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728668195 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Anodes Antimony Antimony base alloys Diffusion coefficient Diffusivity Electrodes Intermetallics Lithium |
title | Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20diffusivity%20in%20antimony-based%20intermetallic%20and%20FeSb-TiC%20composite%20anodes%20as%20measured%20by%20GITT&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Allcorn,%20Eric&rft.date=2015-01-01&rft.volume=17&rft.issue=43&rft.spage=28837&rft.epage=28843&rft.pages=28837-28843&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp04023j&rft_dat=%3Cproquest_cross%3E1816072524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728668195&rft_id=info:pmid/26451397&rfr_iscdi=true |