Aggregative and stochastic model of main path identification: a case study on graphene

This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2014, Vol.98 (1), p.633-655
Hauptverfasser: Yeo, Woondong, Kim, Seonho, Lee, Jae-Min, Kang, Jaewoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 1
container_start_page 633
container_title Scientometrics
container_volume 98
creator Yeo, Woondong
Kim, Seonho
Lee, Jae-Min
Kang, Jaewoo
description This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the aggregative approach and the stochastic approach . The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.
doi_str_mv 10.1007/s11192-013-1140-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728645644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1728645644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD5-gLdcBC-j6SQzk_Em4gsEL-o1tHnMRmaTNZkV_PdGVjx66kPVV3QVISfAzoGx_qIAwMAbBqIBkKwRO2QBrVINVx3skkUVVDOAYPvkoJR3VhnB1IK8Xo1jdiPO4dNRjJaWOZklljkYukrWTTR5usIQ6RrnJQ3WxTn4YCqQ4iVFarC4Cm3sF02RjhnXSxfdEdnzOBV3_HsPycvtzfP1ffP4dPdwffXYGNHC3Fgr2GCZR9UN9X_LUHiQngsjJUPe2beuRSWEbNlgjOdvkisuXO-Y7XkHVhySs23uOqePjSuzXoVi3DRhdGlTNPS1v2w7KasVtlaTUynZeb3OYYX5SwPTPxvq7Ya6TqV_NtSiMqe_8VgMTj5jNKH8gVy17dBCX3186ytViqPL-j1tcqzN_wn_BijngGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728645644</pqid></control><display><type>article</type><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><source>SpringerNature Journals</source><creator>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</creator><creatorcontrib>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</creatorcontrib><description>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the aggregative approach and the stochastic approach . The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-013-1140-3</identifier><identifier>CODEN: SCNTDX</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bibliometrics. Scientometrics ; Bibliometrics. Scientometrics. Evaluation ; Citation analysis ; Computer Science ; Exact sciences and technology ; Information and communication sciences ; Information science. Documentation ; Information Storage and Retrieval ; Library and information science. General aspects ; Library Science ; Sciences and techniques of general use ; Social networks</subject><ispartof>Scientometrics, 2014, Vol.98 (1), p.633-655</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</citedby><cites>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-013-1140-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-013-1140-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28559517$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeo, Woondong</creatorcontrib><creatorcontrib>Kim, Seonho</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><creatorcontrib>Kang, Jaewoo</creatorcontrib><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the aggregative approach and the stochastic approach . The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</description><subject>Bibliometrics. Scientometrics</subject><subject>Bibliometrics. Scientometrics. Evaluation</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Information and communication sciences</subject><subject>Information science. Documentation</subject><subject>Information Storage and Retrieval</subject><subject>Library and information science. General aspects</subject><subject>Library Science</subject><subject>Sciences and techniques of general use</subject><subject>Social networks</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD5-gLdcBC-j6SQzk_Em4gsEL-o1tHnMRmaTNZkV_PdGVjx66kPVV3QVISfAzoGx_qIAwMAbBqIBkKwRO2QBrVINVx3skkUVVDOAYPvkoJR3VhnB1IK8Xo1jdiPO4dNRjJaWOZklljkYukrWTTR5usIQ6RrnJQ3WxTn4YCqQ4iVFarC4Cm3sF02RjhnXSxfdEdnzOBV3_HsPycvtzfP1ffP4dPdwffXYGNHC3Fgr2GCZR9UN9X_LUHiQngsjJUPe2beuRSWEbNlgjOdvkisuXO-Y7XkHVhySs23uOqePjSuzXoVi3DRhdGlTNPS1v2w7KasVtlaTUynZeb3OYYX5SwPTPxvq7Ya6TqV_NtSiMqe_8VgMTj5jNKH8gVy17dBCX3186ytViqPL-j1tcqzN_wn_BijngGs</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Yeo, Woondong</creator><creator>Kim, Seonho</creator><creator>Lee, Jae-Min</creator><creator>Kang, Jaewoo</creator><general>Springer Netherlands</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>2014</creationdate><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><author>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bibliometrics. Scientometrics</topic><topic>Bibliometrics. Scientometrics. Evaluation</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Information and communication sciences</topic><topic>Information science. Documentation</topic><topic>Information Storage and Retrieval</topic><topic>Library and information science. General aspects</topic><topic>Library Science</topic><topic>Sciences and techniques of general use</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, Woondong</creatorcontrib><creatorcontrib>Kim, Seonho</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><creatorcontrib>Kang, Jaewoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, Woondong</au><au>Kim, Seonho</au><au>Lee, Jae-Min</au><au>Kang, Jaewoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregative and stochastic model of main path identification: a case study on graphene</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2014</date><risdate>2014</risdate><volume>98</volume><issue>1</issue><spage>633</spage><epage>655</epage><pages>633-655</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><coden>SCNTDX</coden><abstract>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the aggregative approach and the stochastic approach . The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11192-013-1140-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2014, Vol.98 (1), p.633-655
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_miscellaneous_1728645644
source SpringerNature Journals
subjects Bibliometrics. Scientometrics
Bibliometrics. Scientometrics. Evaluation
Citation analysis
Computer Science
Exact sciences and technology
Information and communication sciences
Information science. Documentation
Information Storage and Retrieval
Library and information science. General aspects
Library Science
Sciences and techniques of general use
Social networks
title Aggregative and stochastic model of main path identification: a case study on graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregative%20and%20stochastic%20model%20of%20main%20path%20identification:%20a%20case%20study%20on%20graphene&rft.jtitle=Scientometrics&rft.au=Yeo,%20Woondong&rft.date=2014&rft.volume=98&rft.issue=1&rft.spage=633&rft.epage=655&rft.pages=633-655&rft.issn=0138-9130&rft.eissn=1588-2861&rft.coden=SCNTDX&rft_id=info:doi/10.1007/s11192-013-1140-3&rft_dat=%3Cproquest_cross%3E1728645644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728645644&rft_id=info:pmid/&rfr_iscdi=true