Aggregative and stochastic model of main path identification: a case study on graphene
This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989 ), we applied two techniques, the...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2014, Vol.98 (1), p.633-655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 1 |
container_start_page | 633 |
container_title | Scientometrics |
container_volume | 98 |
creator | Yeo, Woondong Kim, Seonho Lee, Jae-Min Kang, Jaewoo |
description | This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63,
1989
), we applied two techniques,
the aggregative approach
and
the stochastic approach
. The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search. |
doi_str_mv | 10.1007/s11192-013-1140-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728645644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1728645644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD5-gLdcBC-j6SQzk_Em4gsEL-o1tHnMRmaTNZkV_PdGVjx66kPVV3QVISfAzoGx_qIAwMAbBqIBkKwRO2QBrVINVx3skkUVVDOAYPvkoJR3VhnB1IK8Xo1jdiPO4dNRjJaWOZklljkYukrWTTR5usIQ6RrnJQ3WxTn4YCqQ4iVFarC4Cm3sF02RjhnXSxfdEdnzOBV3_HsPycvtzfP1ffP4dPdwffXYGNHC3Fgr2GCZR9UN9X_LUHiQngsjJUPe2beuRSWEbNlgjOdvkisuXO-Y7XkHVhySs23uOqePjSuzXoVi3DRhdGlTNPS1v2w7KasVtlaTUynZeb3OYYX5SwPTPxvq7Ya6TqV_NtSiMqe_8VgMTj5jNKH8gVy17dBCX3186ytViqPL-j1tcqzN_wn_BijngGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728645644</pqid></control><display><type>article</type><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><source>SpringerNature Journals</source><creator>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</creator><creatorcontrib>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</creatorcontrib><description>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63,
1989
), we applied two techniques,
the aggregative approach
and
the stochastic approach
. The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-013-1140-3</identifier><identifier>CODEN: SCNTDX</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bibliometrics. Scientometrics ; Bibliometrics. Scientometrics. Evaluation ; Citation analysis ; Computer Science ; Exact sciences and technology ; Information and communication sciences ; Information science. Documentation ; Information Storage and Retrieval ; Library and information science. General aspects ; Library Science ; Sciences and techniques of general use ; Social networks</subject><ispartof>Scientometrics, 2014, Vol.98 (1), p.633-655</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</citedby><cites>FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-013-1140-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-013-1140-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28559517$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeo, Woondong</creatorcontrib><creatorcontrib>Kim, Seonho</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><creatorcontrib>Kang, Jaewoo</creatorcontrib><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63,
1989
), we applied two techniques,
the aggregative approach
and
the stochastic approach
. The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</description><subject>Bibliometrics. Scientometrics</subject><subject>Bibliometrics. Scientometrics. Evaluation</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Information and communication sciences</subject><subject>Information science. Documentation</subject><subject>Information Storage and Retrieval</subject><subject>Library and information science. General aspects</subject><subject>Library Science</subject><subject>Sciences and techniques of general use</subject><subject>Social networks</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD5-gLdcBC-j6SQzk_Em4gsEL-o1tHnMRmaTNZkV_PdGVjx66kPVV3QVISfAzoGx_qIAwMAbBqIBkKwRO2QBrVINVx3skkUVVDOAYPvkoJR3VhnB1IK8Xo1jdiPO4dNRjJaWOZklljkYukrWTTR5usIQ6RrnJQ3WxTn4YCqQ4iVFarC4Cm3sF02RjhnXSxfdEdnzOBV3_HsPycvtzfP1ffP4dPdwffXYGNHC3Fgr2GCZR9UN9X_LUHiQngsjJUPe2beuRSWEbNlgjOdvkisuXO-Y7XkHVhySs23uOqePjSuzXoVi3DRhdGlTNPS1v2w7KasVtlaTUynZeb3OYYX5SwPTPxvq7Ya6TqV_NtSiMqe_8VgMTj5jNKH8gVy17dBCX3186ytViqPL-j1tcqzN_wn_BijngGs</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Yeo, Woondong</creator><creator>Kim, Seonho</creator><creator>Lee, Jae-Min</creator><creator>Kang, Jaewoo</creator><general>Springer Netherlands</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>2014</creationdate><title>Aggregative and stochastic model of main path identification: a case study on graphene</title><author>Yeo, Woondong ; Kim, Seonho ; Lee, Jae-Min ; Kang, Jaewoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dd309d0fa869119d0a3f14f23c440a26db65a8334509ccf2b42823e7e0d7261d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bibliometrics. Scientometrics</topic><topic>Bibliometrics. Scientometrics. Evaluation</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Information and communication sciences</topic><topic>Information science. Documentation</topic><topic>Information Storage and Retrieval</topic><topic>Library and information science. General aspects</topic><topic>Library Science</topic><topic>Sciences and techniques of general use</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, Woondong</creatorcontrib><creatorcontrib>Kim, Seonho</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><creatorcontrib>Kang, Jaewoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, Woondong</au><au>Kim, Seonho</au><au>Lee, Jae-Min</au><au>Kang, Jaewoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregative and stochastic model of main path identification: a case study on graphene</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2014</date><risdate>2014</risdate><volume>98</volume><issue>1</issue><spage>633</spage><epage>655</epage><pages>633-655</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><coden>SCNTDX</coden><abstract>This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63,
1989
), we applied two techniques,
the aggregative approach
and
the stochastic approach
. The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11192-013-1140-3</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2014, Vol.98 (1), p.633-655 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728645644 |
source | SpringerNature Journals |
subjects | Bibliometrics. Scientometrics Bibliometrics. Scientometrics. Evaluation Citation analysis Computer Science Exact sciences and technology Information and communication sciences Information science. Documentation Information Storage and Retrieval Library and information science. General aspects Library Science Sciences and techniques of general use Social networks |
title | Aggregative and stochastic model of main path identification: a case study on graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregative%20and%20stochastic%20model%20of%20main%20path%20identification:%20a%20case%20study%20on%20graphene&rft.jtitle=Scientometrics&rft.au=Yeo,%20Woondong&rft.date=2014&rft.volume=98&rft.issue=1&rft.spage=633&rft.epage=655&rft.pages=633-655&rft.issn=0138-9130&rft.eissn=1588-2861&rft.coden=SCNTDX&rft_id=info:doi/10.1007/s11192-013-1140-3&rft_dat=%3Cproquest_cross%3E1728645644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728645644&rft_id=info:pmid/&rfr_iscdi=true |