The Morphology of TiO2 (B) Nanoparticles
The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, essential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-10, Vol.137 (42), p.13612-13623 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13623 |
---|---|
container_issue | 42 |
container_start_page | 13612 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Hua, Xiao Liu, Zheng Bruce, Peter G Grey, Clare P |
description | The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, essential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features with different length scales are encoded in a specific angular range of the X-ray or neutron total scattering pattern of the material. By combining small- and wide-angle scattering (typically X-ray) experiments, the full angular range can be covered, allowing structure to be determined accurately at both the meso- and the nanoscale. In this Article, a comprehensive morphology analysis of lithium-ion battery anode material, TiO2 (B) nanoparticles (described in Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164), incorporating structure modeling with small-angle X-ray scattering (SAXS), pair distribution function (PDF), and X-ray powder diffraction (XRPD) techniques, is presented. The particles are oblate-shaped, contracted along the [010] direction, this particular morphology providing a plausible rationale for the excellent electrochemical behavior of these TiO2(B) nanoparticles, while also provides a structural foundation to model the strain-driven distortion induced by lithiation. The work demonstrates the importance of analyzing various structure features at multiple length scales to determine the morphologies of nanomaterials. |
doi_str_mv | 10.1021/jacs.5b08434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728258180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1728258180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-4ac8eec9a44c12e90511dc11da5363bdd608e0b55d514459826e3eb36a8106433</originalsourceid><addsrcrecordid>eNpFkM1PwkAQxTdGI4jePJse8VCcmf3oclSCHwnKBc-b7XaRksLWLj3w31tijYfJyyQvL-_9GLtFmCAQPmytixOZgxZcnLEhSoJUIqlzNgQASjOt-IBdxbjtXkEaL9mAlCDKFA7ZeLXxyXto6k2owtcxCetkVS4pGT_dJx92H2rbHEpX-XjNLta2iv6m1xH7fJ6vZq_pYvnyNntcpJaEOKTCOu29m1ohHJKfgkQsXHdWcsXzolCgPeRSFhKFkFNNynOfc2U1ghKcj9j4N7duwnfr48Hsyuh8Vdm9D200mJEmqVFDZ73rrW2-84Wpm3Jnm6P5W_ef1SEy29A2-665QTAncOYEzvTg-A_IJlrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728258180</pqid></control><display><type>article</type><title>The Morphology of TiO2 (B) Nanoparticles</title><source>ACS Publications</source><creator>Hua, Xiao ; Liu, Zheng ; Bruce, Peter G ; Grey, Clare P</creator><creatorcontrib>Hua, Xiao ; Liu, Zheng ; Bruce, Peter G ; Grey, Clare P</creatorcontrib><description>The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, essential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features with different length scales are encoded in a specific angular range of the X-ray or neutron total scattering pattern of the material. By combining small- and wide-angle scattering (typically X-ray) experiments, the full angular range can be covered, allowing structure to be determined accurately at both the meso- and the nanoscale. In this Article, a comprehensive morphology analysis of lithium-ion battery anode material, TiO2 (B) nanoparticles (described in Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164), incorporating structure modeling with small-angle X-ray scattering (SAXS), pair distribution function (PDF), and X-ray powder diffraction (XRPD) techniques, is presented. The particles are oblate-shaped, contracted along the [010] direction, this particular morphology providing a plausible rationale for the excellent electrochemical behavior of these TiO2(B) nanoparticles, while also provides a structural foundation to model the strain-driven distortion induced by lithiation. The work demonstrates the importance of analyzing various structure features at multiple length scales to determine the morphologies of nanomaterials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b08434</identifier><identifier>PMID: 26422761</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2015-10, Vol.137 (42), p.13612-13623</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b08434$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b08434$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26422761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Xiao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Bruce, Peter G</creatorcontrib><creatorcontrib>Grey, Clare P</creatorcontrib><title>The Morphology of TiO2 (B) Nanoparticles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, essential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features with different length scales are encoded in a specific angular range of the X-ray or neutron total scattering pattern of the material. By combining small- and wide-angle scattering (typically X-ray) experiments, the full angular range can be covered, allowing structure to be determined accurately at both the meso- and the nanoscale. In this Article, a comprehensive morphology analysis of lithium-ion battery anode material, TiO2 (B) nanoparticles (described in Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164), incorporating structure modeling with small-angle X-ray scattering (SAXS), pair distribution function (PDF), and X-ray powder diffraction (XRPD) techniques, is presented. The particles are oblate-shaped, contracted along the [010] direction, this particular morphology providing a plausible rationale for the excellent electrochemical behavior of these TiO2(B) nanoparticles, while also provides a structural foundation to model the strain-driven distortion induced by lithiation. The work demonstrates the importance of analyzing various structure features at multiple length scales to determine the morphologies of nanomaterials.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkM1PwkAQxTdGI4jePJse8VCcmf3oclSCHwnKBc-b7XaRksLWLj3w31tijYfJyyQvL-_9GLtFmCAQPmytixOZgxZcnLEhSoJUIqlzNgQASjOt-IBdxbjtXkEaL9mAlCDKFA7ZeLXxyXto6k2owtcxCetkVS4pGT_dJx92H2rbHEpX-XjNLta2iv6m1xH7fJ6vZq_pYvnyNntcpJaEOKTCOu29m1ohHJKfgkQsXHdWcsXzolCgPeRSFhKFkFNNynOfc2U1ghKcj9j4N7duwnfr48Hsyuh8Vdm9D200mJEmqVFDZ73rrW2-84Wpm3Jnm6P5W_ef1SEy29A2-665QTAncOYEzvTg-A_IJlrM</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Hua, Xiao</creator><creator>Liu, Zheng</creator><creator>Bruce, Peter G</creator><creator>Grey, Clare P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20151028</creationdate><title>The Morphology of TiO2 (B) Nanoparticles</title><author>Hua, Xiao ; Liu, Zheng ; Bruce, Peter G ; Grey, Clare P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-4ac8eec9a44c12e90511dc11da5363bdd608e0b55d514459826e3eb36a8106433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xiao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Bruce, Peter G</creatorcontrib><creatorcontrib>Grey, Clare P</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Xiao</au><au>Liu, Zheng</au><au>Bruce, Peter G</au><au>Grey, Clare P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Morphology of TiO2 (B) Nanoparticles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>137</volume><issue>42</issue><spage>13612</spage><epage>13623</epage><pages>13612-13623</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, essential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features with different length scales are encoded in a specific angular range of the X-ray or neutron total scattering pattern of the material. By combining small- and wide-angle scattering (typically X-ray) experiments, the full angular range can be covered, allowing structure to be determined accurately at both the meso- and the nanoscale. In this Article, a comprehensive morphology analysis of lithium-ion battery anode material, TiO2 (B) nanoparticles (described in Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164), incorporating structure modeling with small-angle X-ray scattering (SAXS), pair distribution function (PDF), and X-ray powder diffraction (XRPD) techniques, is presented. The particles are oblate-shaped, contracted along the [010] direction, this particular morphology providing a plausible rationale for the excellent electrochemical behavior of these TiO2(B) nanoparticles, while also provides a structural foundation to model the strain-driven distortion induced by lithiation. The work demonstrates the importance of analyzing various structure features at multiple length scales to determine the morphologies of nanomaterials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26422761</pmid><doi>10.1021/jacs.5b08434</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-10, Vol.137 (42), p.13612-13623 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728258180 |
source | ACS Publications |
title | The Morphology of TiO2 (B) Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Morphology%20of%20TiO2%20(B)%20Nanoparticles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hua,%20Xiao&rft.date=2015-10-28&rft.volume=137&rft.issue=42&rft.spage=13612&rft.epage=13623&rft.pages=13612-13623&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b08434&rft_dat=%3Cproquest_pubme%3E1728258180%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728258180&rft_id=info:pmid/26422761&rfr_iscdi=true |