Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities

We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics research 2015-02, Vol.47 (1), p.1-14
Hauptverfasser: Citro, Vincenzo, Giannetti, Flavio, Pralits, Jan O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title Fluid dynamics research
container_volume 47
creator Citro, Vincenzo
Giannetti, Flavio
Pralits, Jan O
description We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem.
doi_str_mv 10.1088/0169-5983/47/1/015503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1727686194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762088542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-c13efabb14d297ded2cd1f7536bd5b7503194f96edb4232e51986972cf170ee73</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMoOD9-gpA7vbAuaZumuZTpVBgKMq9D2pxgRpfUpnPs35vSIV4IuwoveZ6E8x6Erii5o6Qsp4QWImGizKY5n9IYGSPZEZrQkmcJJ4Qdo8kvc4rOQlgRQni8nSC9_OwAEm3X4IL1TjU49Kqyje13t7iDGtrefseAldM4DNA-e4Odd8krbHvvrHLYNH4bsI2EBuxbcLhWkbQQLtCJUU2Ay_15jj7mj8vZc7J4e3qZ3S-SOmeiT2qagVFVRXOdCq5Bp7WmhrOsqDSreByKityIAnSVp1kKjIqyEDytDeUEgGfn6GZ8t-381wZCL9c21NA0yoHfBEl5kcbCWLQPoykvyiJ-GFE2onXnQ-jAyLaza9XtJCVyWIAcypVDuTLnkspxAdGjo2d9K1d-08Vyw0Hn-h9n_vD-l5KtNtkPXf2V1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727686194</pqid></control><display><type>article</type><title>Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Citro, Vincenzo ; Giannetti, Flavio ; Pralits, Jan O</creator><creatorcontrib>Citro, Vincenzo ; Giannetti, Flavio ; Pralits, Jan O</creatorcontrib><description>We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem.</description><identifier>ISSN: 0169-5983</identifier><identifier>EISSN: 1873-7005</identifier><identifier>DOI: 10.1088/0169-5983/47/1/015503</identifier><identifier>CODEN: FDRSEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Adjoints ; Computational fluid dynamics ; Fluid flow ; Holes ; Instability ; Mathematical analysis ; Mathematical models ; Stability</subject><ispartof>Fluid dynamics research, 2015-02, Vol.47 (1), p.1-14</ispartof><rights>2015 The Japan Society of Fluid Mechanics and IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-c13efabb14d297ded2cd1f7536bd5b7503194f96edb4232e51986972cf170ee73</citedby><cites>FETCH-LOGICAL-c459t-c13efabb14d297ded2cd1f7536bd5b7503194f96edb4232e51986972cf170ee73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0169-5983/47/1/015503/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Citro, Vincenzo</creatorcontrib><creatorcontrib>Giannetti, Flavio</creatorcontrib><creatorcontrib>Pralits, Jan O</creatorcontrib><title>Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities</title><title>Fluid dynamics research</title><addtitle>FDR</addtitle><addtitle>Fluid Dyn. Res</addtitle><description>We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem.</description><subject>Adjoints</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Stability</subject><issn>0169-5983</issn><issn>1873-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkV1LwzAUhoMoOD9-gpA7vbAuaZumuZTpVBgKMq9D2pxgRpfUpnPs35vSIV4IuwoveZ6E8x6Erii5o6Qsp4QWImGizKY5n9IYGSPZEZrQkmcJJ4Qdo8kvc4rOQlgRQni8nSC9_OwAEm3X4IL1TjU49Kqyje13t7iDGtrefseAldM4DNA-e4Odd8krbHvvrHLYNH4bsI2EBuxbcLhWkbQQLtCJUU2Ay_15jj7mj8vZc7J4e3qZ3S-SOmeiT2qagVFVRXOdCq5Bp7WmhrOsqDSreByKityIAnSVp1kKjIqyEDytDeUEgGfn6GZ8t-381wZCL9c21NA0yoHfBEl5kcbCWLQPoykvyiJ-GFE2onXnQ-jAyLaza9XtJCVyWIAcypVDuTLnkspxAdGjo2d9K1d-08Vyw0Hn-h9n_vD-l5KtNtkPXf2V1Q</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Citro, Vincenzo</creator><creator>Giannetti, Flavio</creator><creator>Pralits, Jan O</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150201</creationdate><title>Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities</title><author>Citro, Vincenzo ; Giannetti, Flavio ; Pralits, Jan O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-c13efabb14d297ded2cd1f7536bd5b7503194f96edb4232e51986972cf170ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjoints</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Citro, Vincenzo</creatorcontrib><creatorcontrib>Giannetti, Flavio</creatorcontrib><creatorcontrib>Pralits, Jan O</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Citro, Vincenzo</au><au>Giannetti, Flavio</au><au>Pralits, Jan O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities</atitle><jtitle>Fluid dynamics research</jtitle><stitle>FDR</stitle><addtitle>Fluid Dyn. Res</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>47</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0169-5983</issn><eissn>1873-7005</eissn><coden>FDRSEH</coden><abstract>We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem.</abstract><pub>IOP Publishing</pub><doi>10.1088/0169-5983/47/1/015503</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-5983
ispartof Fluid dynamics research, 2015-02, Vol.47 (1), p.1-14
issn 0169-5983
1873-7005
language eng
recordid cdi_proquest_miscellaneous_1727686194
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Adjoints
Computational fluid dynamics
Fluid flow
Holes
Instability
Mathematical analysis
Mathematical models
Stability
title Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20stability,%20receptivity%20and%20sensitivity%20of%20non-Newtonian%20flows%20inside%20open%20cavities&rft.jtitle=Fluid%20dynamics%20research&rft.au=Citro,%20Vincenzo&rft.date=2015-02-01&rft.volume=47&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0169-5983&rft.eissn=1873-7005&rft.coden=FDRSEH&rft_id=info:doi/10.1088/0169-5983/47/1/015503&rft_dat=%3Cproquest_cross%3E1762088542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727686194&rft_id=info:pmid/&rfr_iscdi=true