Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models
New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI) prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Inte...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2015-10, Vol.30 (5), p.1374-1396 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1396 |
---|---|
container_issue | 5 |
container_start_page | 1374 |
container_title | Weather and forecasting |
container_volume | 30 |
creator | Kaplan, John Rozoff, Christopher M. DeMaria, Mark Sampson, Charles R. Kossin, James P. Velden, Christopher S. Cione, Joseph J. Dunion, Jason P. Knaff, John A. Zhang, Jun A. Dostalek, John F. Hawkins, Jeffrey D. Lee, Thomas F. Solbrig, Jeremy E. |
description | New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI) prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index (SHIPS-RII), logistic regression, and Bayesian statistical RI models. Consensus RI models derived by averaging the three individual RI model probability forecasts are also generated. A verification of the cross-validated forecasts of the above RI models conducted for the 12-, 24-, 36-, and 48-h lead times indicates that these models generally exhibit skill relative to climatological forecasts, with the eastern Pacific models providing somewhat more skill than the Atlantic ones and the consensus versions providing more skill than the individual models. A verification of the deterministic RI model forecasts indicates that the operational intensity guidance exhibits some limited RI predictive skill, with the National Hurricane Center (NHC) official forecasts possessing the most skill within the first 24 h and the numerical models providing somewhat more skill at longer lead times. The Hurricane Weather Research and Forecasting Model (HWRF) generally provides the most skillful RI forecasts of any of the conventional intensity models while the new consensus RI model shows potential for providing increased skill over the existing operational intensity guidance. Finally, newly developed versions of the deterministic rapid intensification aid guidance that employ the new probabilistic consensus RI model forecasts along with the existing operational intensity model consensus produce lower mean errors and biases than the intensity consensus model alone. |
doi_str_mv | 10.1175/WAF-D-15-0032.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1727677088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3847775531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-83270eadea12fd72179db5affd4e8b6df0372a61d97f9ccbc7824cb53cbe6d843</originalsourceid><addsrcrecordid>eNpdkU1LxDAURYMoOI6u3RbcuKmTj6ZplzLO6ICi6IjLkCapRNqkJunA-OtN1ZWrC-8dDo93AThH8AohRhdv1-v8Jkc0h5DgK3QAZohimMOCFIdgBqsK5xWi5TE4CeEDQogprmdgt9qJbhTR2PdsZXfGO9trG0WXbfpByBgyZ7Otd4ORabbcy85ZnT2LwahsY6O2wbRpFU3CnrxWRkbRmM7EffYaU35N4peYgBB_FA9O6S6cgqNWdEGf_eUcvK5X2-Vdfv94u1le3-eyoDTmFcEMaqG0QLhVDCNWq4aKtlWFrppStZAwLEqkatbWUjaSVbiQDSWy0aWqCjIHl7_ewbvPUYfIexOk7jphtRsDRwyzkrH0nYRe_EM_3Ohtuu6HIlVN2CRc_FLSuxC8bvngTS_8niPIpx546oHfcET51ANH5BufvH44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727389374</pqid></control><display><type>article</type><title>Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kaplan, John ; Rozoff, Christopher M. ; DeMaria, Mark ; Sampson, Charles R. ; Kossin, James P. ; Velden, Christopher S. ; Cione, Joseph J. ; Dunion, Jason P. ; Knaff, John A. ; Zhang, Jun A. ; Dostalek, John F. ; Hawkins, Jeffrey D. ; Lee, Thomas F. ; Solbrig, Jeremy E.</creator><creatorcontrib>Kaplan, John ; Rozoff, Christopher M. ; DeMaria, Mark ; Sampson, Charles R. ; Kossin, James P. ; Velden, Christopher S. ; Cione, Joseph J. ; Dunion, Jason P. ; Knaff, John A. ; Zhang, Jun A. ; Dostalek, John F. ; Hawkins, Jeffrey D. ; Lee, Thomas F. ; Solbrig, Jeremy E.</creatorcontrib><description>New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI) prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index (SHIPS-RII), logistic regression, and Bayesian statistical RI models. Consensus RI models derived by averaging the three individual RI model probability forecasts are also generated. A verification of the cross-validated forecasts of the above RI models conducted for the 12-, 24-, 36-, and 48-h lead times indicates that these models generally exhibit skill relative to climatological forecasts, with the eastern Pacific models providing somewhat more skill than the Atlantic ones and the consensus versions providing more skill than the individual models. A verification of the deterministic RI model forecasts indicates that the operational intensity guidance exhibits some limited RI predictive skill, with the National Hurricane Center (NHC) official forecasts possessing the most skill within the first 24 h and the numerical models providing somewhat more skill at longer lead times. The Hurricane Weather Research and Forecasting Model (HWRF) generally provides the most skillful RI forecasts of any of the conventional intensity models while the new consensus RI model shows potential for providing increased skill over the existing operational intensity guidance. Finally, newly developed versions of the deterministic rapid intensification aid guidance that employ the new probabilistic consensus RI model forecasts along with the existing operational intensity model consensus produce lower mean errors and biases than the intensity consensus model alone.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-15-0032.1</identifier><identifier>CODEN: WEFOE3</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Basins ; Cyclones ; Environmental impact ; Hurricanes ; Marine ; Mathematical models ; Meteorology ; Prediction models ; Roles ; Statistical models ; Studies ; Tropical cyclones</subject><ispartof>Weather and forecasting, 2015-10, Vol.30 (5), p.1374-1396</ispartof><rights>Copyright American Meteorological Society Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-83270eadea12fd72179db5affd4e8b6df0372a61d97f9ccbc7824cb53cbe6d843</citedby><cites>FETCH-LOGICAL-c455t-83270eadea12fd72179db5affd4e8b6df0372a61d97f9ccbc7824cb53cbe6d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaplan, John</creatorcontrib><creatorcontrib>Rozoff, Christopher M.</creatorcontrib><creatorcontrib>DeMaria, Mark</creatorcontrib><creatorcontrib>Sampson, Charles R.</creatorcontrib><creatorcontrib>Kossin, James P.</creatorcontrib><creatorcontrib>Velden, Christopher S.</creatorcontrib><creatorcontrib>Cione, Joseph J.</creatorcontrib><creatorcontrib>Dunion, Jason P.</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Zhang, Jun A.</creatorcontrib><creatorcontrib>Dostalek, John F.</creatorcontrib><creatorcontrib>Hawkins, Jeffrey D.</creatorcontrib><creatorcontrib>Lee, Thomas F.</creatorcontrib><creatorcontrib>Solbrig, Jeremy E.</creatorcontrib><title>Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models</title><title>Weather and forecasting</title><description>New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI) prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index (SHIPS-RII), logistic regression, and Bayesian statistical RI models. Consensus RI models derived by averaging the three individual RI model probability forecasts are also generated. A verification of the cross-validated forecasts of the above RI models conducted for the 12-, 24-, 36-, and 48-h lead times indicates that these models generally exhibit skill relative to climatological forecasts, with the eastern Pacific models providing somewhat more skill than the Atlantic ones and the consensus versions providing more skill than the individual models. A verification of the deterministic RI model forecasts indicates that the operational intensity guidance exhibits some limited RI predictive skill, with the National Hurricane Center (NHC) official forecasts possessing the most skill within the first 24 h and the numerical models providing somewhat more skill at longer lead times. The Hurricane Weather Research and Forecasting Model (HWRF) generally provides the most skillful RI forecasts of any of the conventional intensity models while the new consensus RI model shows potential for providing increased skill over the existing operational intensity guidance. Finally, newly developed versions of the deterministic rapid intensification aid guidance that employ the new probabilistic consensus RI model forecasts along with the existing operational intensity model consensus produce lower mean errors and biases than the intensity consensus model alone.</description><subject>Basins</subject><subject>Cyclones</subject><subject>Environmental impact</subject><subject>Hurricanes</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Prediction models</subject><subject>Roles</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Tropical cyclones</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LxDAURYMoOI6u3RbcuKmTj6ZplzLO6ICi6IjLkCapRNqkJunA-OtN1ZWrC-8dDo93AThH8AohRhdv1-v8Jkc0h5DgK3QAZohimMOCFIdgBqsK5xWi5TE4CeEDQogprmdgt9qJbhTR2PdsZXfGO9trG0WXbfpByBgyZ7Otd4ORabbcy85ZnT2LwahsY6O2wbRpFU3CnrxWRkbRmM7EffYaU35N4peYgBB_FA9O6S6cgqNWdEGf_eUcvK5X2-Vdfv94u1le3-eyoDTmFcEMaqG0QLhVDCNWq4aKtlWFrppStZAwLEqkatbWUjaSVbiQDSWy0aWqCjIHl7_ewbvPUYfIexOk7jphtRsDRwyzkrH0nYRe_EM_3Ohtuu6HIlVN2CRc_FLSuxC8bvngTS_8niPIpx546oHfcET51ANH5BufvH44</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kaplan, John</creator><creator>Rozoff, Christopher M.</creator><creator>DeMaria, Mark</creator><creator>Sampson, Charles R.</creator><creator>Kossin, James P.</creator><creator>Velden, Christopher S.</creator><creator>Cione, Joseph J.</creator><creator>Dunion, Jason P.</creator><creator>Knaff, John A.</creator><creator>Zhang, Jun A.</creator><creator>Dostalek, John F.</creator><creator>Hawkins, Jeffrey D.</creator><creator>Lee, Thomas F.</creator><creator>Solbrig, Jeremy E.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20151001</creationdate><title>Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models</title><author>Kaplan, John ; Rozoff, Christopher M. ; DeMaria, Mark ; Sampson, Charles R. ; Kossin, James P. ; Velden, Christopher S. ; Cione, Joseph J. ; Dunion, Jason P. ; Knaff, John A. ; Zhang, Jun A. ; Dostalek, John F. ; Hawkins, Jeffrey D. ; Lee, Thomas F. ; Solbrig, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-83270eadea12fd72179db5affd4e8b6df0372a61d97f9ccbc7824cb53cbe6d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Basins</topic><topic>Cyclones</topic><topic>Environmental impact</topic><topic>Hurricanes</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Prediction models</topic><topic>Roles</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Tropical cyclones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, John</creatorcontrib><creatorcontrib>Rozoff, Christopher M.</creatorcontrib><creatorcontrib>DeMaria, Mark</creatorcontrib><creatorcontrib>Sampson, Charles R.</creatorcontrib><creatorcontrib>Kossin, James P.</creatorcontrib><creatorcontrib>Velden, Christopher S.</creatorcontrib><creatorcontrib>Cione, Joseph J.</creatorcontrib><creatorcontrib>Dunion, Jason P.</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Zhang, Jun A.</creatorcontrib><creatorcontrib>Dostalek, John F.</creatorcontrib><creatorcontrib>Hawkins, Jeffrey D.</creatorcontrib><creatorcontrib>Lee, Thomas F.</creatorcontrib><creatorcontrib>Solbrig, Jeremy E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career & Technical Education Database</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, John</au><au>Rozoff, Christopher M.</au><au>DeMaria, Mark</au><au>Sampson, Charles R.</au><au>Kossin, James P.</au><au>Velden, Christopher S.</au><au>Cione, Joseph J.</au><au>Dunion, Jason P.</au><au>Knaff, John A.</au><au>Zhang, Jun A.</au><au>Dostalek, John F.</au><au>Hawkins, Jeffrey D.</au><au>Lee, Thomas F.</au><au>Solbrig, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models</atitle><jtitle>Weather and forecasting</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>30</volume><issue>5</issue><spage>1374</spage><epage>1396</epage><pages>1374-1396</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><coden>WEFOE3</coden><abstract>New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI) prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index (SHIPS-RII), logistic regression, and Bayesian statistical RI models. Consensus RI models derived by averaging the three individual RI model probability forecasts are also generated. A verification of the cross-validated forecasts of the above RI models conducted for the 12-, 24-, 36-, and 48-h lead times indicates that these models generally exhibit skill relative to climatological forecasts, with the eastern Pacific models providing somewhat more skill than the Atlantic ones and the consensus versions providing more skill than the individual models. A verification of the deterministic RI model forecasts indicates that the operational intensity guidance exhibits some limited RI predictive skill, with the National Hurricane Center (NHC) official forecasts possessing the most skill within the first 24 h and the numerical models providing somewhat more skill at longer lead times. The Hurricane Weather Research and Forecasting Model (HWRF) generally provides the most skillful RI forecasts of any of the conventional intensity models while the new consensus RI model shows potential for providing increased skill over the existing operational intensity guidance. Finally, newly developed versions of the deterministic rapid intensification aid guidance that employ the new probabilistic consensus RI model forecasts along with the existing operational intensity model consensus produce lower mean errors and biases than the intensity consensus model alone.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-15-0032.1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8156 |
ispartof | Weather and forecasting, 2015-10, Vol.30 (5), p.1374-1396 |
issn | 0882-8156 1520-0434 |
language | eng |
recordid | cdi_proquest_miscellaneous_1727677088 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Basins Cyclones Environmental impact Hurricanes Marine Mathematical models Meteorology Prediction models Roles Statistical models Studies Tropical cyclones |
title | Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Environmental%20Impacts%20on%20Tropical%20Cyclone%20Rapid%20Intensification%20Predictability%20Utilizing%20Statistical%20Models&rft.jtitle=Weather%20and%20forecasting&rft.au=Kaplan,%20John&rft.date=2015-10-01&rft.volume=30&rft.issue=5&rft.spage=1374&rft.epage=1396&rft.pages=1374-1396&rft.issn=0882-8156&rft.eissn=1520-0434&rft.coden=WEFOE3&rft_id=info:doi/10.1175/WAF-D-15-0032.1&rft_dat=%3Cproquest_cross%3E3847775531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727389374&rft_id=info:pmid/&rfr_iscdi=true |