A Model for the Mechanism of Strand Passage by DNA Gyrase
The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1999-07, Vol.96 (15), p.8414-8419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8419 |
---|---|
container_issue | 15 |
container_start_page | 8414 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 96 |
creator | Kampranis, Sotirios C. Bates, Andrew D. Maxwell, Anthony |
description | The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis. |
doi_str_mv | 10.1073/pnas.96.15.8414 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17273476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48500</jstor_id><sourcerecordid>48500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</originalsourceid><addsrcrecordid>eNqF0cFv0zAUBnALgVgZnJE4IIsDnNI9x47tJ3GpxjaQNkACzpbj2GuqNO7sZFr_e1J1TB0HOPnwfp_17I-Q1wzmDBQ_2fQ2z1HOWTXXgoknZMYAWSEFwlMyAyhVoUUpjsiLnFcAgJWG5-SIgWBMa5wRXNCr2PiOhpjosPT0yrul7du8pjHQH0OyfUO_25zttaf1ln76uqAX22Szf0meBdtl_-r-PCa_zs9-nn4uLr9dfDldXBauYjgUXNSoeaMBnQtQQuNqrCRHXbKyBlY3Sk1r1iCDVgorJ5Xy3gYMTjaKK86Pycf9vZuxXvvG-X5aqjOb1K5t2ppoW_N40rdLcx1vDVMVhyn-_j6e4s3o82DWbXa-62zv45iNRIQSEf8LmSoVF0pO8N1fcBXH1E9_YEpgAkqm1IRO9silmHPy4WFhBmZXndlVZ1AaVplddVPi7eE7D_y-qwOwS_4ZP7rhwz-BCWPXDf5umOSbvVzlIaYHKnQFwH8DVtuzig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402177</pqid></control><display><type>article</type><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</creator><creatorcontrib>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</creatorcontrib><description>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.15.8414</identifier><identifier>PMID: 10411889</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Binding Sites ; Biochemistry ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA Topoisomerases, Type I - metabolism ; DNA Topoisomerases, Type II - chemistry ; DNA, Superhelical - chemistry ; Enzymes ; Escherichia coli - enzymology ; Genetic equilibrium ; Hydrolysis ; Mathematical topoi ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleotides ; Protein Conformation ; Topology ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8414-8419</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 20, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</citedby><cites>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48500$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48500$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10411889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Bates, Andrew D.</creatorcontrib><creatorcontrib>Maxwell, Anthony</creatorcontrib><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA Topoisomerases, Type II - chemistry</subject><subject>DNA, Superhelical - chemistry</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Genetic equilibrium</subject><subject>Hydrolysis</subject><subject>Mathematical topoi</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides</subject><subject>Protein Conformation</subject><subject>Topology</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFv0zAUBnALgVgZnJE4IIsDnNI9x47tJ3GpxjaQNkACzpbj2GuqNO7sZFr_e1J1TB0HOPnwfp_17I-Q1wzmDBQ_2fQ2z1HOWTXXgoknZMYAWSEFwlMyAyhVoUUpjsiLnFcAgJWG5-SIgWBMa5wRXNCr2PiOhpjosPT0yrul7du8pjHQH0OyfUO_25zttaf1ln76uqAX22Szf0meBdtl_-r-PCa_zs9-nn4uLr9dfDldXBauYjgUXNSoeaMBnQtQQuNqrCRHXbKyBlY3Sk1r1iCDVgorJ5Xy3gYMTjaKK86Pycf9vZuxXvvG-X5aqjOb1K5t2ppoW_N40rdLcx1vDVMVhyn-_j6e4s3o82DWbXa-62zv45iNRIQSEf8LmSoVF0pO8N1fcBXH1E9_YEpgAkqm1IRO9silmHPy4WFhBmZXndlVZ1AaVplddVPi7eE7D_y-qwOwS_4ZP7rhwz-BCWPXDf5umOSbvVzlIaYHKnQFwH8DVtuzig</recordid><startdate>19990720</startdate><enddate>19990720</enddate><creator>Kampranis, Sotirios C.</creator><creator>Bates, Andrew D.</creator><creator>Maxwell, Anthony</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990720</creationdate><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><author>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA Topoisomerases, Type II - chemistry</topic><topic>DNA, Superhelical - chemistry</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Genetic equilibrium</topic><topic>Hydrolysis</topic><topic>Mathematical topoi</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides</topic><topic>Protein Conformation</topic><topic>Topology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Bates, Andrew D.</creatorcontrib><creatorcontrib>Maxwell, Anthony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampranis, Sotirios C.</au><au>Bates, Andrew D.</au><au>Maxwell, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for the Mechanism of Strand Passage by DNA Gyrase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-07-20</date><risdate>1999</risdate><volume>96</volume><issue>15</issue><spage>8414</spage><epage>8419</epage><pages>8414-8419</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10411889</pmid><doi>10.1073/pnas.96.15.8414</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8414-8419 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_17273476 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatases Adenosine Triphosphatases - metabolism Adenosine Triphosphate - metabolism Binding Sites Biochemistry Biological Sciences Deoxyribonucleic acid DNA DNA - chemistry DNA Topoisomerases, Type I - metabolism DNA Topoisomerases, Type II - chemistry DNA, Superhelical - chemistry Enzymes Escherichia coli - enzymology Genetic equilibrium Hydrolysis Mathematical topoi Models, Molecular Mutation Nucleic Acid Conformation Nucleotides Protein Conformation Topology Yeasts |
title | A Model for the Mechanism of Strand Passage by DNA Gyrase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20the%20Mechanism%20of%20Strand%20Passage%20by%20DNA%20Gyrase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kampranis,%20Sotirios%20C.&rft.date=1999-07-20&rft.volume=96&rft.issue=15&rft.spage=8414&rft.epage=8419&rft.pages=8414-8419&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.15.8414&rft_dat=%3Cjstor_proqu%3E48500%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402177&rft_id=info:pmid/10411889&rft_jstor_id=48500&rfr_iscdi=true |