A Model for the Mechanism of Strand Passage by DNA Gyrase

The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-07, Vol.96 (15), p.8414-8419
Hauptverfasser: Kampranis, Sotirios C., Bates, Andrew D., Maxwell, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8419
container_issue 15
container_start_page 8414
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Kampranis, Sotirios C.
Bates, Andrew D.
Maxwell, Anthony
description The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.
doi_str_mv 10.1073/pnas.96.15.8414
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17273476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48500</jstor_id><sourcerecordid>48500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</originalsourceid><addsrcrecordid>eNqF0cFv0zAUBnALgVgZnJE4IIsDnNI9x47tJ3GpxjaQNkACzpbj2GuqNO7sZFr_e1J1TB0HOPnwfp_17I-Q1wzmDBQ_2fQ2z1HOWTXXgoknZMYAWSEFwlMyAyhVoUUpjsiLnFcAgJWG5-SIgWBMa5wRXNCr2PiOhpjosPT0yrul7du8pjHQH0OyfUO_25zttaf1ln76uqAX22Szf0meBdtl_-r-PCa_zs9-nn4uLr9dfDldXBauYjgUXNSoeaMBnQtQQuNqrCRHXbKyBlY3Sk1r1iCDVgorJ5Xy3gYMTjaKK86Pycf9vZuxXvvG-X5aqjOb1K5t2ppoW_N40rdLcx1vDVMVhyn-_j6e4s3o82DWbXa-62zv45iNRIQSEf8LmSoVF0pO8N1fcBXH1E9_YEpgAkqm1IRO9silmHPy4WFhBmZXndlVZ1AaVplddVPi7eE7D_y-qwOwS_4ZP7rhwz-BCWPXDf5umOSbvVzlIaYHKnQFwH8DVtuzig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402177</pqid></control><display><type>article</type><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</creator><creatorcontrib>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</creatorcontrib><description>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.15.8414</identifier><identifier>PMID: 10411889</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Binding Sites ; Biochemistry ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA Topoisomerases, Type I - metabolism ; DNA Topoisomerases, Type II - chemistry ; DNA, Superhelical - chemistry ; Enzymes ; Escherichia coli - enzymology ; Genetic equilibrium ; Hydrolysis ; Mathematical topoi ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleotides ; Protein Conformation ; Topology ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8414-8419</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 20, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</citedby><cites>FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48500$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48500$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10411889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Bates, Andrew D.</creatorcontrib><creatorcontrib>Maxwell, Anthony</creatorcontrib><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA Topoisomerases, Type II - chemistry</subject><subject>DNA, Superhelical - chemistry</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Genetic equilibrium</subject><subject>Hydrolysis</subject><subject>Mathematical topoi</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides</subject><subject>Protein Conformation</subject><subject>Topology</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFv0zAUBnALgVgZnJE4IIsDnNI9x47tJ3GpxjaQNkACzpbj2GuqNO7sZFr_e1J1TB0HOPnwfp_17I-Q1wzmDBQ_2fQ2z1HOWTXXgoknZMYAWSEFwlMyAyhVoUUpjsiLnFcAgJWG5-SIgWBMa5wRXNCr2PiOhpjosPT0yrul7du8pjHQH0OyfUO_25zttaf1ln76uqAX22Szf0meBdtl_-r-PCa_zs9-nn4uLr9dfDldXBauYjgUXNSoeaMBnQtQQuNqrCRHXbKyBlY3Sk1r1iCDVgorJ5Xy3gYMTjaKK86Pycf9vZuxXvvG-X5aqjOb1K5t2ppoW_N40rdLcx1vDVMVhyn-_j6e4s3o82DWbXa-62zv45iNRIQSEf8LmSoVF0pO8N1fcBXH1E9_YEpgAkqm1IRO9silmHPy4WFhBmZXndlVZ1AaVplddVPi7eE7D_y-qwOwS_4ZP7rhwz-BCWPXDf5umOSbvVzlIaYHKnQFwH8DVtuzig</recordid><startdate>19990720</startdate><enddate>19990720</enddate><creator>Kampranis, Sotirios C.</creator><creator>Bates, Andrew D.</creator><creator>Maxwell, Anthony</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990720</creationdate><title>A Model for the Mechanism of Strand Passage by DNA Gyrase</title><author>Kampranis, Sotirios C. ; Bates, Andrew D. ; Maxwell, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-34b983d809ccf020dcb956398212b01bd77002b06f87795c677eeaf9fc6d73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA Topoisomerases, Type II - chemistry</topic><topic>DNA, Superhelical - chemistry</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Genetic equilibrium</topic><topic>Hydrolysis</topic><topic>Mathematical topoi</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides</topic><topic>Protein Conformation</topic><topic>Topology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Bates, Andrew D.</creatorcontrib><creatorcontrib>Maxwell, Anthony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampranis, Sotirios C.</au><au>Bates, Andrew D.</au><au>Maxwell, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for the Mechanism of Strand Passage by DNA Gyrase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-07-20</date><risdate>1999</risdate><volume>96</volume><issue>15</issue><spage>8414</spage><epage>8419</epage><pages>8414-8419</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10411889</pmid><doi>10.1073/pnas.96.15.8414</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8414-8419
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_17273476
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatases
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Binding Sites
Biochemistry
Biological Sciences
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA Topoisomerases, Type I - metabolism
DNA Topoisomerases, Type II - chemistry
DNA, Superhelical - chemistry
Enzymes
Escherichia coli - enzymology
Genetic equilibrium
Hydrolysis
Mathematical topoi
Models, Molecular
Mutation
Nucleic Acid Conformation
Nucleotides
Protein Conformation
Topology
Yeasts
title A Model for the Mechanism of Strand Passage by DNA Gyrase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20the%20Mechanism%20of%20Strand%20Passage%20by%20DNA%20Gyrase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kampranis,%20Sotirios%20C.&rft.date=1999-07-20&rft.volume=96&rft.issue=15&rft.spage=8414&rft.epage=8419&rft.pages=8414-8419&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.15.8414&rft_dat=%3Cjstor_proqu%3E48500%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402177&rft_id=info:pmid/10411889&rft_jstor_id=48500&rfr_iscdi=true