Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions

Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the results with those obtained in a recent fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2006-06, Vol.42 (6), p.n/a
Hauptverfasser: Kleissl, J, Kumar, V, Meneveau, C, Parlange, M.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Water resources research
container_volume 42
creator Kleissl, J
Kumar, V
Meneveau, C
Parlange, M.B
description Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the results with those obtained in a recent field experimental study (HATS (Kleissl et al., 2004)). In the dynamic model the Smagorinsky coefficient c(s) is obtained from test filtering and analysis of the resolved large scales during the simulation. In the scale-invariant dynamic model the coefficient is independent of filter scale, and the scale-dependent model does not require this assumption. Both approaches provide realistic results of mean vertical profiles in an unstable boundary layer. The advantages of the scale-dependent model become evident in the simulation of a stable boundary layer and in the velocity and temperature spectra of both stable and unstable cases. To compare numerical results with HATS data, a simulation of the evolution of the ABL during a diurnal cycle is performed. The numerical prediction of c(s) from the scale-invariant model is too small, whereas the coefficients obtained from the scale-dependent version of the model are consistent with results from HATS. LES of the ABL using the scale-dependent dynamic model give reliable results for mean profiles and spectra at stable, neutral, and unstable atmospheric stabilities. However, simulations under strongly stable conditions (horizontal filter size divided by Obukhov length >3.8) display instabilities due to basic flaws in the eddy viscosity closure, no matter how accurately the coefficient is determined.
doi_str_mv 10.1029/2005WR004685
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17263640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17263640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4997-9370bffa018285ec6528923acb7cf2bf9bc3669cd622c3f55724a1e062f8a7753</originalsourceid><addsrcrecordid>eNp90E2P1CAYwPHGaOK4evMuJ09WeWmheDMTHTWTMem6zpE8pTCLS8sIbbRfxM8rk26MJ08E8vs_CU9RPCf4NcFUvqEY18cW44o39YNiQ2RVlUIK9rDY5EdWEibF4-JJSt8xJlXNxab4fZgHE50Gj9I09wsKFvXLCIPT6HqAU4huTHcLGkJvfEJuRB7iyZSmzza5YfYwuTBesunWIJiGkM63l4moC_PYQ1xysZj4Fn0D7_pV5zFpgs7nYOzRPN5fdBh7dwHpafHIgk_m2f15Vdx8eP91-7Hcf9l92r7bl1BJKUrJBO6sBUwa2tRG85o2kjLQndCWdlZ2mnEudc8p1czWtaAVEIM5tQ0IUbOr4uU69xzDj9mkSQ0uaeM9jCbMSRFBOeMVzvDVCnUMKUVj1Tm6If9OEawuy1f_Lj9ztvKfzpvlv1Yd221LMBciV-VauTSZX38riHeKCyYyPezU7sjb_aFp1efsX6zeQlBwii6pm2uKCcNYEkkryf4AOvqh0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17263640</pqid></control><display><type>article</type><title>Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kleissl, J ; Kumar, V ; Meneveau, C ; Parlange, M.B</creator><creatorcontrib>Kleissl, J ; Kumar, V ; Meneveau, C ; Parlange, M.B</creatorcontrib><description>Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the results with those obtained in a recent field experimental study (HATS (Kleissl et al., 2004)). In the dynamic model the Smagorinsky coefficient c(s) is obtained from test filtering and analysis of the resolved large scales during the simulation. In the scale-invariant dynamic model the coefficient is independent of filter scale, and the scale-dependent model does not require this assumption. Both approaches provide realistic results of mean vertical profiles in an unstable boundary layer. The advantages of the scale-dependent model become evident in the simulation of a stable boundary layer and in the velocity and temperature spectra of both stable and unstable cases. To compare numerical results with HATS data, a simulation of the evolution of the ABL during a diurnal cycle is performed. The numerical prediction of c(s) from the scale-invariant model is too small, whereas the coefficients obtained from the scale-dependent version of the model are consistent with results from HATS. LES of the ABL using the scale-dependent dynamic model give reliable results for mean profiles and spectra at stable, neutral, and unstable atmospheric stabilities. However, simulations under strongly stable conditions (horizontal filter size divided by Obukhov length &gt;3.8) display instabilities due to basic flaws in the eddy viscosity closure, no matter how accurately the coefficient is determined.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2005WR004685</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>atmosphere ; atmospheric boundary layer ; climate models ; diurnal variation ; dynamic models ; large-eddy simulation ; mathematical models ; model validation ; prediction ; simulation models ; subgrid-scale model</subject><ispartof>Water resources research, 2006-06, Vol.42 (6), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4997-9370bffa018285ec6528923acb7cf2bf9bc3669cd622c3f55724a1e062f8a7753</citedby><cites>FETCH-LOGICAL-a4997-9370bffa018285ec6528923acb7cf2bf9bc3669cd622c3f55724a1e062f8a7753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005WR004685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005WR004685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Kleissl, J</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Meneveau, C</creatorcontrib><creatorcontrib>Parlange, M.B</creatorcontrib><title>Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the results with those obtained in a recent field experimental study (HATS (Kleissl et al., 2004)). In the dynamic model the Smagorinsky coefficient c(s) is obtained from test filtering and analysis of the resolved large scales during the simulation. In the scale-invariant dynamic model the coefficient is independent of filter scale, and the scale-dependent model does not require this assumption. Both approaches provide realistic results of mean vertical profiles in an unstable boundary layer. The advantages of the scale-dependent model become evident in the simulation of a stable boundary layer and in the velocity and temperature spectra of both stable and unstable cases. To compare numerical results with HATS data, a simulation of the evolution of the ABL during a diurnal cycle is performed. The numerical prediction of c(s) from the scale-invariant model is too small, whereas the coefficients obtained from the scale-dependent version of the model are consistent with results from HATS. LES of the ABL using the scale-dependent dynamic model give reliable results for mean profiles and spectra at stable, neutral, and unstable atmospheric stabilities. However, simulations under strongly stable conditions (horizontal filter size divided by Obukhov length &gt;3.8) display instabilities due to basic flaws in the eddy viscosity closure, no matter how accurately the coefficient is determined.</description><subject>atmosphere</subject><subject>atmospheric boundary layer</subject><subject>climate models</subject><subject>diurnal variation</subject><subject>dynamic models</subject><subject>large-eddy simulation</subject><subject>mathematical models</subject><subject>model validation</subject><subject>prediction</subject><subject>simulation models</subject><subject>subgrid-scale model</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90E2P1CAYwPHGaOK4evMuJ09WeWmheDMTHTWTMem6zpE8pTCLS8sIbbRfxM8rk26MJ08E8vs_CU9RPCf4NcFUvqEY18cW44o39YNiQ2RVlUIK9rDY5EdWEibF4-JJSt8xJlXNxab4fZgHE50Gj9I09wsKFvXLCIPT6HqAU4huTHcLGkJvfEJuRB7iyZSmzza5YfYwuTBesunWIJiGkM63l4moC_PYQ1xysZj4Fn0D7_pV5zFpgs7nYOzRPN5fdBh7dwHpafHIgk_m2f15Vdx8eP91-7Hcf9l92r7bl1BJKUrJBO6sBUwa2tRG85o2kjLQndCWdlZ2mnEudc8p1czWtaAVEIM5tQ0IUbOr4uU69xzDj9mkSQ0uaeM9jCbMSRFBOeMVzvDVCnUMKUVj1Tm6If9OEawuy1f_Lj9ztvKfzpvlv1Yd221LMBciV-VauTSZX38riHeKCyYyPezU7sjb_aFp1efsX6zeQlBwii6pm2uKCcNYEkkryf4AOvqh0w</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Kleissl, J</creator><creator>Kumar, V</creator><creator>Meneveau, C</creator><creator>Parlange, M.B</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200606</creationdate><title>Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions</title><author>Kleissl, J ; Kumar, V ; Meneveau, C ; Parlange, M.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4997-9370bffa018285ec6528923acb7cf2bf9bc3669cd622c3f55724a1e062f8a7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>atmosphere</topic><topic>atmospheric boundary layer</topic><topic>climate models</topic><topic>diurnal variation</topic><topic>dynamic models</topic><topic>large-eddy simulation</topic><topic>mathematical models</topic><topic>model validation</topic><topic>prediction</topic><topic>simulation models</topic><topic>subgrid-scale model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleissl, J</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Meneveau, C</creatorcontrib><creatorcontrib>Parlange, M.B</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleissl, J</au><au>Kumar, V</au><au>Meneveau, C</au><au>Parlange, M.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2006-06</date><risdate>2006</risdate><volume>42</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the results with those obtained in a recent field experimental study (HATS (Kleissl et al., 2004)). In the dynamic model the Smagorinsky coefficient c(s) is obtained from test filtering and analysis of the resolved large scales during the simulation. In the scale-invariant dynamic model the coefficient is independent of filter scale, and the scale-dependent model does not require this assumption. Both approaches provide realistic results of mean vertical profiles in an unstable boundary layer. The advantages of the scale-dependent model become evident in the simulation of a stable boundary layer and in the velocity and temperature spectra of both stable and unstable cases. To compare numerical results with HATS data, a simulation of the evolution of the ABL during a diurnal cycle is performed. The numerical prediction of c(s) from the scale-invariant model is too small, whereas the coefficients obtained from the scale-dependent version of the model are consistent with results from HATS. LES of the ABL using the scale-dependent dynamic model give reliable results for mean profiles and spectra at stable, neutral, and unstable atmospheric stabilities. However, simulations under strongly stable conditions (horizontal filter size divided by Obukhov length &gt;3.8) display instabilities due to basic flaws in the eddy viscosity closure, no matter how accurately the coefficient is determined.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005WR004685</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2006-06, Vol.42 (6), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_17263640
source Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects atmosphere
atmospheric boundary layer
climate models
diurnal variation
dynamic models
large-eddy simulation
mathematical models
model validation
prediction
simulation models
subgrid-scale model
title Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20dynamic%20Smagorinsky%20models%20in%20large-eddy%20simulation%20of%20the%20atmospheric%20boundary%20layer:%20Validation%20in%20stable%20and%20unstable%20conditions&rft.jtitle=Water%20resources%20research&rft.au=Kleissl,%20J&rft.date=2006-06&rft.volume=42&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2005WR004685&rft_dat=%3Cproquest_cross%3E17263640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17263640&rft_id=info:pmid/&rfr_iscdi=true