Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors

Purpose Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). Methods Uptake assay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer chemotherapy and pharmacology 2015-11, Vol.76 (5), p.1093-1098
Hauptverfasser: Damaraju, Vijaya L., Kuzma, Michelle, Cass, Carol E., Sawyer, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 5
container_start_page 1093
container_title Cancer chemotherapy and pharmacology
container_volume 76
creator Damaraju, Vijaya L.
Kuzma, Michelle
Cass, Carol E.
Sawyer, Michael B.
description Purpose Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). Methods Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose–response curves for inhibition of 1 µM [ 3 H]adenine or 1 µM [ 3 H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0–100 µM) to calculate the IC 50 values (mean ± S.E) for inhibition. Results Gefitinib inhibited ENBT activity with an IC 50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib > sorafenib > imatinib > sunitinib inhibited ENBT with IC 50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations >100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib > erlotinib > gefitinib > sunitinib > imatinib with IC 50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations >100 µM. Conclusions These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.
doi_str_mv 10.1007/s00280-015-2859-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1725522711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1725522711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-71618005217ca4b952258fa41c6bc26099e3f008f0afedc4616f0e4289c0de843</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMo7rr6A7xIwYuX6OSjbXqUxY-FBS96DmmbatZuUpNW2H9vSndRvMzAzMM7w_sidEnglgDkdwGACsBAUkxFWmBxhOaEM4pBcHaM5sA4x2kOfIbOQtgAACeMnaIZzRgDxugchZX9MKXpjbOJa5LgajNssbG17nQstk-UrQ_j36Edqla7UgWd9F7Z0Dkfyao331FKh6TcJf3Ou2CsTj6NHTkzHXI-nKOTRrVBX-z7Ar09Prwun_H65Wm1vF_jjhLa45xkRACklOSV4mWRUpqKRnFSZWVFMygKzRoA0YBqdF3xjGQNaE5FUUGtowMLdDPpdt59DTr0cmtCpdtWWe2GIElO0yiaExLR63_oxg3exu9GihPBi0xE6mpPDeVW17LzZqv8Th7sjACdgBBX9l37PzIgx8zklJmMmckxMynYDy-iiEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1724184968</pqid></control><display><type>article</type><title>Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors</title><source>MEDLINE</source><source>Springer Online Journals - JUSTICE</source><creator>Damaraju, Vijaya L. ; Kuzma, Michelle ; Cass, Carol E. ; Sawyer, Michael B.</creator><creatorcontrib>Damaraju, Vijaya L. ; Kuzma, Michelle ; Cass, Carol E. ; Sawyer, Michael B.</creatorcontrib><description>Purpose Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). Methods Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose–response curves for inhibition of 1 µM [ 3 H]adenine or 1 µM [ 3 H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0–100 µM) to calculate the IC 50 values (mean ± S.E) for inhibition. Results Gefitinib inhibited ENBT activity with an IC 50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib &gt; sorafenib &gt; imatinib &gt; sunitinib inhibited ENBT with IC 50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations &gt;100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib &gt; erlotinib &gt; gefitinib &gt; sunitinib &gt; imatinib with IC 50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations &gt;100 µM. Conclusions These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/s00280-015-2859-8</identifier><identifier>PMID: 26330332</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenine - metabolism ; Animals ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Binding, Competitive ; Biological Transport - drug effects ; Cancer Research ; Cell Line ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Humans ; Inhibitory Concentration 50 ; Kidney Tubules, Proximal - drug effects ; Kidney Tubules, Proximal - metabolism ; Medicine ; Medicine &amp; Public Health ; Neoplasm Proteins - antagonists &amp; inhibitors ; Nucleobase Transport Proteins - antagonists &amp; inhibitors ; Nucleobase Transport Proteins - classification ; Oncology ; Pharmacology/Toxicology ; Protein Kinase Inhibitors - classification ; Protein Kinase Inhibitors - pharmacokinetics ; Protein Kinase Inhibitors - pharmacology ; Protein-Tyrosine Kinases - antagonists &amp; inhibitors ; Short Communication ; Sodium - physiology ; Sus scrofa ; Swine</subject><ispartof>Cancer chemotherapy and pharmacology, 2015-11, Vol.76 (5), p.1093-1098</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-71618005217ca4b952258fa41c6bc26099e3f008f0afedc4616f0e4289c0de843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00280-015-2859-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00280-015-2859-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26330332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damaraju, Vijaya L.</creatorcontrib><creatorcontrib>Kuzma, Michelle</creatorcontrib><creatorcontrib>Cass, Carol E.</creatorcontrib><creatorcontrib>Sawyer, Michael B.</creatorcontrib><title>Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><addtitle>Cancer Chemother Pharmacol</addtitle><description>Purpose Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). Methods Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose–response curves for inhibition of 1 µM [ 3 H]adenine or 1 µM [ 3 H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0–100 µM) to calculate the IC 50 values (mean ± S.E) for inhibition. Results Gefitinib inhibited ENBT activity with an IC 50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib &gt; sorafenib &gt; imatinib &gt; sunitinib inhibited ENBT with IC 50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations &gt;100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib &gt; erlotinib &gt; gefitinib &gt; sunitinib &gt; imatinib with IC 50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations &gt;100 µM. Conclusions These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.</description><subject>Adenine - metabolism</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Binding, Competitive</subject><subject>Biological Transport - drug effects</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Kidney Tubules, Proximal - drug effects</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neoplasm Proteins - antagonists &amp; inhibitors</subject><subject>Nucleobase Transport Proteins - antagonists &amp; inhibitors</subject><subject>Nucleobase Transport Proteins - classification</subject><subject>Oncology</subject><subject>Pharmacology/Toxicology</subject><subject>Protein Kinase Inhibitors - classification</subject><subject>Protein Kinase Inhibitors - pharmacokinetics</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Short Communication</subject><subject>Sodium - physiology</subject><subject>Sus scrofa</subject><subject>Swine</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1LxDAQhoMo7rr6A7xIwYuX6OSjbXqUxY-FBS96DmmbatZuUpNW2H9vSndRvMzAzMM7w_sidEnglgDkdwGACsBAUkxFWmBxhOaEM4pBcHaM5sA4x2kOfIbOQtgAACeMnaIZzRgDxugchZX9MKXpjbOJa5LgajNssbG17nQstk-UrQ_j36Edqla7UgWd9F7Z0Dkfyao331FKh6TcJf3Ou2CsTj6NHTkzHXI-nKOTRrVBX-z7Ar09Prwun_H65Wm1vF_jjhLa45xkRACklOSV4mWRUpqKRnFSZWVFMygKzRoA0YBqdF3xjGQNaE5FUUGtowMLdDPpdt59DTr0cmtCpdtWWe2GIElO0yiaExLR63_oxg3exu9GihPBi0xE6mpPDeVW17LzZqv8Th7sjACdgBBX9l37PzIgx8zklJmMmckxMynYDy-iiEs</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Damaraju, Vijaya L.</creator><creator>Kuzma, Michelle</creator><creator>Cass, Carol E.</creator><creator>Sawyer, Michael B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20151101</creationdate><title>Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors</title><author>Damaraju, Vijaya L. ; Kuzma, Michelle ; Cass, Carol E. ; Sawyer, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-71618005217ca4b952258fa41c6bc26099e3f008f0afedc4616f0e4289c0de843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenine - metabolism</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Binding, Competitive</topic><topic>Biological Transport - drug effects</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Kidney Tubules, Proximal - drug effects</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neoplasm Proteins - antagonists &amp; inhibitors</topic><topic>Nucleobase Transport Proteins - antagonists &amp; inhibitors</topic><topic>Nucleobase Transport Proteins - classification</topic><topic>Oncology</topic><topic>Pharmacology/Toxicology</topic><topic>Protein Kinase Inhibitors - classification</topic><topic>Protein Kinase Inhibitors - pharmacokinetics</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Short Communication</topic><topic>Sodium - physiology</topic><topic>Sus scrofa</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damaraju, Vijaya L.</creatorcontrib><creatorcontrib>Kuzma, Michelle</creatorcontrib><creatorcontrib>Cass, Carol E.</creatorcontrib><creatorcontrib>Sawyer, Michael B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damaraju, Vijaya L.</au><au>Kuzma, Michelle</au><au>Cass, Carol E.</au><au>Sawyer, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><stitle>Cancer Chemother Pharmacol</stitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>76</volume><issue>5</issue><spage>1093</spage><epage>1098</epage><pages>1093-1098</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><abstract>Purpose Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). Methods Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose–response curves for inhibition of 1 µM [ 3 H]adenine or 1 µM [ 3 H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0–100 µM) to calculate the IC 50 values (mean ± S.E) for inhibition. Results Gefitinib inhibited ENBT activity with an IC 50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib &gt; sorafenib &gt; imatinib &gt; sunitinib inhibited ENBT with IC 50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations &gt;100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib &gt; erlotinib &gt; gefitinib &gt; sunitinib &gt; imatinib with IC 50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations &gt;100 µM. Conclusions These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26330332</pmid><doi>10.1007/s00280-015-2859-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0344-5704
ispartof Cancer chemotherapy and pharmacology, 2015-11, Vol.76 (5), p.1093-1098
issn 0344-5704
1432-0843
language eng
recordid cdi_proquest_miscellaneous_1725522711
source MEDLINE; Springer Online Journals - JUSTICE
subjects Adenine - metabolism
Animals
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Binding, Competitive
Biological Transport - drug effects
Cancer Research
Cell Line
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Humans
Inhibitory Concentration 50
Kidney Tubules, Proximal - drug effects
Kidney Tubules, Proximal - metabolism
Medicine
Medicine & Public Health
Neoplasm Proteins - antagonists & inhibitors
Nucleobase Transport Proteins - antagonists & inhibitors
Nucleobase Transport Proteins - classification
Oncology
Pharmacology/Toxicology
Protein Kinase Inhibitors - classification
Protein Kinase Inhibitors - pharmacokinetics
Protein Kinase Inhibitors - pharmacology
Protein-Tyrosine Kinases - antagonists & inhibitors
Short Communication
Sodium - physiology
Sus scrofa
Swine
title Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20sodium-independent%20and%20sodium-dependent%20nucleobase%20transport%20activities%20by%20tyrosine%20kinase%20inhibitors&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=Damaraju,%20Vijaya%20L.&rft.date=2015-11-01&rft.volume=76&rft.issue=5&rft.spage=1093&rft.epage=1098&rft.pages=1093-1098&rft.issn=0344-5704&rft.eissn=1432-0843&rft_id=info:doi/10.1007/s00280-015-2859-8&rft_dat=%3Cproquest_pubme%3E1725522711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1724184968&rft_id=info:pmid/26330332&rfr_iscdi=true