Optofluidic wavelength division multiplexing for single-virus detection
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (42), p.12933-12937 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12937 |
---|---|
container_issue | 42 |
container_start_page | 12933 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Ozcelik, Damla Parks, Joshua W. Wall, Thomas A. Stott, Matthew A. Cai, Hong Parks, Joseph W. Hawkins, Aaron R. Schmidt, Holger |
description | Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. |
doi_str_mv | 10.1073/pnas.1511921112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1725513616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465542</jstor_id><sourcerecordid>26465542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</originalsourceid><addsrcrecordid>eNqN0c1rFDEYBvAgFrtWz56UAS9eps2b77kIUtoqFHqp55CdSbZZspMxyaz635tl17X21FMC-eUheR-E3gE-ByzpxTSafA4coCMAQF6gBeAOWsE6_BItMCayVYywU_Q65zXGuOMKv0KnRDCqFMMLdHM3lejC7AffNz_N1gY7rspDM_itzz6OzWYOxU_B_vLjqnExNblugm23Ps25GWyxfanuDTpxJmT79rCeoe_XV_eXX9vbu5tvl19u255jKC01Ri4VHTBminMmwVBJBtHzbklJb5011GHiuFWks5Io5aRTZIkHCoRy5-gZ-rzPneblxg69HUsyQU_Jb0z6raPx-v-T0T_oVdxqJghWUtaAT4eAFH_MNhe98bm3IZjRxjlrkEwoyQXAMyjhHKgAUenHJ3Qd5zTWSexUV0ctuKrqYq_6FHNO1h3fDVjv-tS7PvW_PuuND4-_e_R_C6ygOYDdzWMcEM2IBtJRWsn7PVnnEtPjCFErIPQPP02wfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729840658</pqid></control><display><type>article</type><title>Optofluidic wavelength division multiplexing for single-virus detection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</creator><creatorcontrib>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</creatorcontrib><description>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1511921112</identifier><identifier>PMID: 26438840</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Color ; Fluorescence ; Influenza ; Influenza A virus - isolation & purification ; Light ; Microfluidic Analytical Techniques ; Optical Devices ; Optics ; Physical Sciences ; Wave division multiplexing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (42), p.12933-12937</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 20, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</citedby><cites>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26438840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozcelik, Damla</creatorcontrib><creatorcontrib>Parks, Joshua W.</creatorcontrib><creatorcontrib>Wall, Thomas A.</creatorcontrib><creatorcontrib>Stott, Matthew A.</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Parks, Joseph W.</creatorcontrib><creatorcontrib>Hawkins, Aaron R.</creatorcontrib><creatorcontrib>Schmidt, Holger</creatorcontrib><title>Optofluidic wavelength division multiplexing for single-virus detection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</description><subject>Color</subject><subject>Fluorescence</subject><subject>Influenza</subject><subject>Influenza A virus - isolation & purification</subject><subject>Light</subject><subject>Microfluidic Analytical Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Wave division multiplexing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1rFDEYBvAgFrtWz56UAS9eps2b77kIUtoqFHqp55CdSbZZspMxyaz635tl17X21FMC-eUheR-E3gE-ByzpxTSafA4coCMAQF6gBeAOWsE6_BItMCayVYywU_Q65zXGuOMKv0KnRDCqFMMLdHM3lejC7AffNz_N1gY7rspDM_itzz6OzWYOxU_B_vLjqnExNblugm23Ps25GWyxfanuDTpxJmT79rCeoe_XV_eXX9vbu5tvl19u255jKC01Ri4VHTBminMmwVBJBtHzbklJb5011GHiuFWks5Io5aRTZIkHCoRy5-gZ-rzPneblxg69HUsyQU_Jb0z6raPx-v-T0T_oVdxqJghWUtaAT4eAFH_MNhe98bm3IZjRxjlrkEwoyQXAMyjhHKgAUenHJ3Qd5zTWSexUV0ctuKrqYq_6FHNO1h3fDVjv-tS7PvW_PuuND4-_e_R_C6ygOYDdzWMcEM2IBtJRWsn7PVnnEtPjCFErIPQPP02wfQ</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Ozcelik, Damla</creator><creator>Parks, Joshua W.</creator><creator>Wall, Thomas A.</creator><creator>Stott, Matthew A.</creator><creator>Cai, Hong</creator><creator>Parks, Joseph W.</creator><creator>Hawkins, Aaron R.</creator><creator>Schmidt, Holger</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151020</creationdate><title>Optofluidic wavelength division multiplexing for single-virus detection</title><author>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Color</topic><topic>Fluorescence</topic><topic>Influenza</topic><topic>Influenza A virus - isolation & purification</topic><topic>Light</topic><topic>Microfluidic Analytical Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Wave division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozcelik, Damla</creatorcontrib><creatorcontrib>Parks, Joshua W.</creatorcontrib><creatorcontrib>Wall, Thomas A.</creatorcontrib><creatorcontrib>Stott, Matthew A.</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Parks, Joseph W.</creatorcontrib><creatorcontrib>Hawkins, Aaron R.</creatorcontrib><creatorcontrib>Schmidt, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozcelik, Damla</au><au>Parks, Joshua W.</au><au>Wall, Thomas A.</au><au>Stott, Matthew A.</au><au>Cai, Hong</au><au>Parks, Joseph W.</au><au>Hawkins, Aaron R.</au><au>Schmidt, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optofluidic wavelength division multiplexing for single-virus detection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>112</volume><issue>42</issue><spage>12933</spage><epage>12937</epage><pages>12933-12937</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26438840</pmid><doi>10.1073/pnas.1511921112</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (42), p.12933-12937 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1725513616 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Color Fluorescence Influenza Influenza A virus - isolation & purification Light Microfluidic Analytical Techniques Optical Devices Optics Physical Sciences Wave division multiplexing |
title | Optofluidic wavelength division multiplexing for single-virus detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optofluidic%20wavelength%20division%20multiplexing%20for%20single-virus%20detection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ozcelik,%20Damla&rft.date=2015-10-20&rft.volume=112&rft.issue=42&rft.spage=12933&rft.epage=12937&rft.pages=12933-12937&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1511921112&rft_dat=%3Cjstor_proqu%3E26465542%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729840658&rft_id=info:pmid/26438840&rft_jstor_id=26465542&rfr_iscdi=true |