Optofluidic wavelength division multiplexing for single-virus detection

Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (42), p.12933-12937
Hauptverfasser: Ozcelik, Damla, Parks, Joshua W., Wall, Thomas A., Stott, Matthew A., Cai, Hong, Parks, Joseph W., Hawkins, Aaron R., Schmidt, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12937
container_issue 42
container_start_page 12933
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Ozcelik, Damla
Parks, Joshua W.
Wall, Thomas A.
Stott, Matthew A.
Cai, Hong
Parks, Joseph W.
Hawkins, Aaron R.
Schmidt, Holger
description Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.
doi_str_mv 10.1073/pnas.1511921112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1725513616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465542</jstor_id><sourcerecordid>26465542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</originalsourceid><addsrcrecordid>eNqN0c1rFDEYBvAgFrtWz56UAS9eps2b77kIUtoqFHqp55CdSbZZspMxyaz635tl17X21FMC-eUheR-E3gE-ByzpxTSafA4coCMAQF6gBeAOWsE6_BItMCayVYywU_Q65zXGuOMKv0KnRDCqFMMLdHM3lejC7AffNz_N1gY7rspDM_itzz6OzWYOxU_B_vLjqnExNblugm23Ps25GWyxfanuDTpxJmT79rCeoe_XV_eXX9vbu5tvl19u255jKC01Ri4VHTBminMmwVBJBtHzbklJb5011GHiuFWks5Io5aRTZIkHCoRy5-gZ-rzPneblxg69HUsyQU_Jb0z6raPx-v-T0T_oVdxqJghWUtaAT4eAFH_MNhe98bm3IZjRxjlrkEwoyQXAMyjhHKgAUenHJ3Qd5zTWSexUV0ctuKrqYq_6FHNO1h3fDVjv-tS7PvW_PuuND4-_e_R_C6ygOYDdzWMcEM2IBtJRWsn7PVnnEtPjCFErIPQPP02wfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729840658</pqid></control><display><type>article</type><title>Optofluidic wavelength division multiplexing for single-virus detection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</creator><creatorcontrib>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</creatorcontrib><description>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1511921112</identifier><identifier>PMID: 26438840</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Color ; Fluorescence ; Influenza ; Influenza A virus - isolation &amp; purification ; Light ; Microfluidic Analytical Techniques ; Optical Devices ; Optics ; Physical Sciences ; Wave division multiplexing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (42), p.12933-12937</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 20, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</citedby><cites>FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26438840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozcelik, Damla</creatorcontrib><creatorcontrib>Parks, Joshua W.</creatorcontrib><creatorcontrib>Wall, Thomas A.</creatorcontrib><creatorcontrib>Stott, Matthew A.</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Parks, Joseph W.</creatorcontrib><creatorcontrib>Hawkins, Aaron R.</creatorcontrib><creatorcontrib>Schmidt, Holger</creatorcontrib><title>Optofluidic wavelength division multiplexing for single-virus detection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</description><subject>Color</subject><subject>Fluorescence</subject><subject>Influenza</subject><subject>Influenza A virus - isolation &amp; purification</subject><subject>Light</subject><subject>Microfluidic Analytical Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Wave division multiplexing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1rFDEYBvAgFrtWz56UAS9eps2b77kIUtoqFHqp55CdSbZZspMxyaz635tl17X21FMC-eUheR-E3gE-ByzpxTSafA4coCMAQF6gBeAOWsE6_BItMCayVYywU_Q65zXGuOMKv0KnRDCqFMMLdHM3lejC7AffNz_N1gY7rspDM_itzz6OzWYOxU_B_vLjqnExNblugm23Ps25GWyxfanuDTpxJmT79rCeoe_XV_eXX9vbu5tvl19u255jKC01Ri4VHTBminMmwVBJBtHzbklJb5011GHiuFWks5Io5aRTZIkHCoRy5-gZ-rzPneblxg69HUsyQU_Jb0z6raPx-v-T0T_oVdxqJghWUtaAT4eAFH_MNhe98bm3IZjRxjlrkEwoyQXAMyjhHKgAUenHJ3Qd5zTWSexUV0ctuKrqYq_6FHNO1h3fDVjv-tS7PvW_PuuND4-_e_R_C6ygOYDdzWMcEM2IBtJRWsn7PVnnEtPjCFErIPQPP02wfQ</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Ozcelik, Damla</creator><creator>Parks, Joshua W.</creator><creator>Wall, Thomas A.</creator><creator>Stott, Matthew A.</creator><creator>Cai, Hong</creator><creator>Parks, Joseph W.</creator><creator>Hawkins, Aaron R.</creator><creator>Schmidt, Holger</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151020</creationdate><title>Optofluidic wavelength division multiplexing for single-virus detection</title><author>Ozcelik, Damla ; Parks, Joshua W. ; Wall, Thomas A. ; Stott, Matthew A. ; Cai, Hong ; Parks, Joseph W. ; Hawkins, Aaron R. ; Schmidt, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-3aa7b83d004855471a372d6c59b32cefea3f02f5e829e7288f7f82b0d31235ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Color</topic><topic>Fluorescence</topic><topic>Influenza</topic><topic>Influenza A virus - isolation &amp; purification</topic><topic>Light</topic><topic>Microfluidic Analytical Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Wave division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozcelik, Damla</creatorcontrib><creatorcontrib>Parks, Joshua W.</creatorcontrib><creatorcontrib>Wall, Thomas A.</creatorcontrib><creatorcontrib>Stott, Matthew A.</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Parks, Joseph W.</creatorcontrib><creatorcontrib>Hawkins, Aaron R.</creatorcontrib><creatorcontrib>Schmidt, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozcelik, Damla</au><au>Parks, Joshua W.</au><au>Wall, Thomas A.</au><au>Stott, Matthew A.</au><au>Cai, Hong</au><au>Parks, Joseph W.</au><au>Hawkins, Aaron R.</au><au>Schmidt, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optofluidic wavelength division multiplexing for single-virus detection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>112</volume><issue>42</issue><spage>12933</spage><epage>12937</epage><pages>12933-12937</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context—the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26438840</pmid><doi>10.1073/pnas.1511921112</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (42), p.12933-12937
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1725513616
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Color
Fluorescence
Influenza
Influenza A virus - isolation & purification
Light
Microfluidic Analytical Techniques
Optical Devices
Optics
Physical Sciences
Wave division multiplexing
title Optofluidic wavelength division multiplexing for single-virus detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optofluidic%20wavelength%20division%20multiplexing%20for%20single-virus%20detection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ozcelik,%20Damla&rft.date=2015-10-20&rft.volume=112&rft.issue=42&rft.spage=12933&rft.epage=12937&rft.pages=12933-12937&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1511921112&rft_dat=%3Cjstor_proqu%3E26465542%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729840658&rft_id=info:pmid/26438840&rft_jstor_id=26465542&rfr_iscdi=true