Building better wildlife-habitat models

Wildlife-habitat models are an important tool in wildlife management today, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show usefu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 1999-04, Vol.22 (2), p.219-219
Hauptverfasser: Beutel, T. S., Beeton, R. J. S., Baxter, G. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 2
container_start_page 219
container_title Ecography (Copenhagen)
container_volume 22
creator Beutel, T. S.
Beeton, R. J. S.
Baxter, G. S.
description Wildlife-habitat models are an important tool in wildlife management today, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive skill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a meta-model, and discuss methods for their validation. Even where all six assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.
doi_str_mv 10.1111/j.1600-0587.1999.tb00471.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17250427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3683281</jstor_id><sourcerecordid>3683281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4369-5ac9e0849f4925aa2828b50ca866b5c62bb40df8b17c9ebc45805cfa6af72e563</originalsourceid><addsrcrecordid>eNqVkFtLwzAYhoMoOA__wIsholetX9Lm5I244TZhHhDFy5BkqbZ260w6nP_elo55bW5CeJ-8LzwInWKIcXMuixgzgAio4DGWUsa1AUg5jtc7qLeNdlEPJLCIUwn76CCEAgATyUQPXQxWeTnLF-994-ra-f538yzzzEUf2uS1rvvzaubKcIT2Ml0Gd7y5D9Hr6PZlOImmj-O74c00smnCZES1lQ5EKrNUEqo1EUQYClYLxgy1jBiTwiwTBvMGNDalAqjNNNMZJ46y5BCdd71LX32tXKjVPA_WlaVeuGoVFOaEQkp4A151oPVVCN5launzufY_CoNq3ahCtQJUK0C1btTGjVo3n882KzpYXWZeL2we_hq4pDLFDXbdYY0U9_OPAXU7fBwTLJuGk66hCHXltw0JEwkR7UDUxXmo3Xoba_-pGE84VW8PY_X0_DYik8G9mia_SqGQtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17250427</pqid></control><display><type>article</type><title>Building better wildlife-habitat models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Beutel, T. S. ; Beeton, R. J. S. ; Baxter, G. S.</creator><creatorcontrib>Beutel, T. S. ; Beeton, R. J. S. ; Baxter, G. S.</creatorcontrib><description>Wildlife-habitat models are an important tool in wildlife management today, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive skill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a meta-model, and discuss methods for their validation. Even where all six assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/j.1600-0587.1999.tb00471.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agricultural management ; Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Conservation, protection and management of environment and wildlife ; Ecological modeling ; Forest habitats ; Forum ; Fundamental and applied biological sciences. Psychology ; General aspects ; Habitat conservation ; Habitat preferences ; Modeling ; Predictive modeling ; Riverine habitats ; Statistical models ; Wildlife habitats</subject><ispartof>Ecography (Copenhagen), 1999-04, Vol.22 (2), p.219-219</ispartof><rights>Copyright 1999 Ecography</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4369-5ac9e0849f4925aa2828b50ca866b5c62bb40df8b17c9ebc45805cfa6af72e563</citedby><cites>FETCH-LOGICAL-c4369-5ac9e0849f4925aa2828b50ca866b5c62bb40df8b17c9ebc45805cfa6af72e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3683281$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3683281$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27911,27912,45561,45562,58004,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1795941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beutel, T. S.</creatorcontrib><creatorcontrib>Beeton, R. J. S.</creatorcontrib><creatorcontrib>Baxter, G. S.</creatorcontrib><title>Building better wildlife-habitat models</title><title>Ecography (Copenhagen)</title><description>Wildlife-habitat models are an important tool in wildlife management today, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive skill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a meta-model, and discuss methods for their validation. Even where all six assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.</description><subject>Agricultural management</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Ecological modeling</subject><subject>Forest habitats</subject><subject>Forum</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Habitat conservation</subject><subject>Habitat preferences</subject><subject>Modeling</subject><subject>Predictive modeling</subject><subject>Riverine habitats</subject><subject>Statistical models</subject><subject>Wildlife habitats</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVkFtLwzAYhoMoOA__wIsholetX9Lm5I244TZhHhDFy5BkqbZ260w6nP_elo55bW5CeJ-8LzwInWKIcXMuixgzgAio4DGWUsa1AUg5jtc7qLeNdlEPJLCIUwn76CCEAgATyUQPXQxWeTnLF-994-ra-f538yzzzEUf2uS1rvvzaubKcIT2Ml0Gd7y5D9Hr6PZlOImmj-O74c00smnCZES1lQ5EKrNUEqo1EUQYClYLxgy1jBiTwiwTBvMGNDalAqjNNNMZJ46y5BCdd71LX32tXKjVPA_WlaVeuGoVFOaEQkp4A151oPVVCN5launzufY_CoNq3ahCtQJUK0C1btTGjVo3n882KzpYXWZeL2we_hq4pDLFDXbdYY0U9_OPAXU7fBwTLJuGk66hCHXltw0JEwkR7UDUxXmo3Xoba_-pGE84VW8PY_X0_DYik8G9mia_SqGQtQ</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>Beutel, T. S.</creator><creator>Beeton, R. J. S.</creator><creator>Baxter, G. S.</creator><general>Blackwell Publishing Ltd</general><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>199904</creationdate><title>Building better wildlife-habitat models</title><author>Beutel, T. S. ; Beeton, R. J. S. ; Baxter, G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4369-5ac9e0849f4925aa2828b50ca866b5c62bb40df8b17c9ebc45805cfa6af72e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Agricultural management</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Ecological modeling</topic><topic>Forest habitats</topic><topic>Forum</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Habitat conservation</topic><topic>Habitat preferences</topic><topic>Modeling</topic><topic>Predictive modeling</topic><topic>Riverine habitats</topic><topic>Statistical models</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beutel, T. S.</creatorcontrib><creatorcontrib>Beeton, R. J. S.</creatorcontrib><creatorcontrib>Baxter, G. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beutel, T. S.</au><au>Beeton, R. J. S.</au><au>Baxter, G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building better wildlife-habitat models</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>1999-04</date><risdate>1999</risdate><volume>22</volume><issue>2</issue><spage>219</spage><epage>219</epage><pages>219-219</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Wildlife-habitat models are an important tool in wildlife management today, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive skill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a meta-model, and discuss methods for their validation. Even where all six assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1600-0587.1999.tb00471.x</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 1999-04, Vol.22 (2), p.219-219
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_miscellaneous_17250427
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Agricultural management
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Conservation, protection and management of environment and wildlife
Ecological modeling
Forest habitats
Forum
Fundamental and applied biological sciences. Psychology
General aspects
Habitat conservation
Habitat preferences
Modeling
Predictive modeling
Riverine habitats
Statistical models
Wildlife habitats
title Building better wildlife-habitat models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20better%20wildlife-habitat%20models&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Beutel,%20T.%20S.&rft.date=1999-04&rft.volume=22&rft.issue=2&rft.spage=219&rft.epage=219&rft.pages=219-219&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/j.1600-0587.1999.tb00471.x&rft_dat=%3Cjstor_proqu%3E3683281%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17250427&rft_id=info:pmid/&rft_jstor_id=3683281&rfr_iscdi=true