Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants

Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2005-08, Vol.39 (16), p.2714-2720
Hauptverfasser: Lee, Joo-Youp, Ju, Yuhong, Keener, T C, Varma, R S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2720
container_issue 16
container_start_page 2714
container_title Environmental science & technology
container_volume 39
creator Lee, Joo-Youp
Ju, Yuhong
Keener, T C
Varma, R S
description Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg super(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degree C and/or 140 degree C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg super(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K10 showed a moderate adsorption capacity at 70 degree C, which can be used for sorbent injection prior to the wet FGD system.
doi_str_mv 10.1021/es051951l
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_17231778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17231778</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_172317783</originalsourceid><addsrcrecordid>eNqNyzGOwjAQQFEXrAQsFNxgKgRFYBwLAjULokIIKOiQCWMU5GSCJ8lenxR7gK1-875SI40zjbGek-BCrxfad1QPUZtobZbXruqLvBAxNrjqKfqhhjyXORUVsIMNSxVtnaO0yhqCAxepDXcu4Mzh3hoBxwH2T5C6pDDBKZwo58Z6cIHzdrc-2mWBHnDkXwpw9LadBurLWS80_Ou3Gu-2l80-KgO_a5LqlmeSkm8xcS03ncRGJ8nK_Bt-AAlRTHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17231778</pqid></control><display><type>article</type><title>Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants</title><source>ACS Publications</source><creator>Lee, Joo-Youp ; Ju, Yuhong ; Keener, T C ; Varma, R S</creator><creatorcontrib>Lee, Joo-Youp ; Ju, Yuhong ; Keener, T C ; Varma, R S</creatorcontrib><description>Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg super(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degree C and/or 140 degree C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg super(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K10 showed a moderate adsorption capacity at 70 degree C, which can be used for sorbent injection prior to the wet FGD system.</description><identifier>ISSN: 0013-936X</identifier><identifier>DOI: 10.1021/es051951l</identifier><language>eng</language><ispartof>Environmental science &amp; technology, 2005-08, Vol.39 (16), p.2714-2720</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Joo-Youp</creatorcontrib><creatorcontrib>Ju, Yuhong</creatorcontrib><creatorcontrib>Keener, T C</creatorcontrib><creatorcontrib>Varma, R S</creatorcontrib><title>Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants</title><title>Environmental science &amp; technology</title><description>Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg super(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degree C and/or 140 degree C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg super(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K10 showed a moderate adsorption capacity at 70 degree C, which can be used for sorbent injection prior to the wet FGD system.</description><issn>0013-936X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNyzGOwjAQQFEXrAQsFNxgKgRFYBwLAjULokIIKOiQCWMU5GSCJ8lenxR7gK1-875SI40zjbGek-BCrxfad1QPUZtobZbXruqLvBAxNrjqKfqhhjyXORUVsIMNSxVtnaO0yhqCAxepDXcu4Mzh3hoBxwH2T5C6pDDBKZwo58Z6cIHzdrc-2mWBHnDkXwpw9LadBurLWS80_Ou3Gu-2l80-KgO_a5LqlmeSkm8xcS03ncRGJ8nK_Bt-AAlRTHc</recordid><startdate>20050815</startdate><enddate>20050815</enddate><creator>Lee, Joo-Youp</creator><creator>Ju, Yuhong</creator><creator>Keener, T C</creator><creator>Varma, R S</creator><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20050815</creationdate><title>Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants</title><author>Lee, Joo-Youp ; Ju, Yuhong ; Keener, T C ; Varma, R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_172317783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo-Youp</creatorcontrib><creatorcontrib>Ju, Yuhong</creatorcontrib><creatorcontrib>Keener, T C</creatorcontrib><creatorcontrib>Varma, R S</creatorcontrib><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joo-Youp</au><au>Ju, Yuhong</au><au>Keener, T C</au><au>Varma, R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants</atitle><jtitle>Environmental science &amp; technology</jtitle><date>2005-08-15</date><risdate>2005</risdate><volume>39</volume><issue>16</issue><spage>2714</spage><epage>2720</epage><pages>2714-2720</pages><issn>0013-936X</issn><abstract>Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg super(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degree C and/or 140 degree C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg super(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K10 showed a moderate adsorption capacity at 70 degree C, which can be used for sorbent injection prior to the wet FGD system.</abstract><doi>10.1021/es051951l</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2005-08, Vol.39 (16), p.2714-2720
issn 0013-936X
language eng
recordid cdi_proquest_miscellaneous_17231778
source ACS Publications
title Development of Cost-Effective Noncarbon Sorbents for Hg super(0) Removal from Coal-Fired Power Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Cost-Effective%20Noncarbon%20Sorbents%20for%20Hg%20super(0)%20Removal%20from%20Coal-Fired%20Power%20Plants&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lee,%20Joo-Youp&rft.date=2005-08-15&rft.volume=39&rft.issue=16&rft.spage=2714&rft.epage=2720&rft.pages=2714-2720&rft.issn=0013-936X&rft_id=info:doi/10.1021/es051951l&rft_dat=%3Cproquest%3E17231778%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17231778&rft_id=info:pmid/&rfr_iscdi=true