Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation

The fate of arsenic in aquatic systems is influenced by dissolved natural organic matter (DOM). Using UV-A and visible light from a medium-pressure mercury lamp, the photosensitized oxidation of As(III) to As(V) in the presence of Suwannee River humic acid was investigated. Pseudo-first-order kineti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2005-12, Vol.39 (24), p.9541-9546
Hauptverfasser: Buschmann, Johanna, Canonica, Silvio, Lindauer, Ursula, Hug, Stephan J, Sigg, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9546
container_issue 24
container_start_page 9541
container_title Environmental science & technology
container_volume 39
creator Buschmann, Johanna
Canonica, Silvio
Lindauer, Ursula
Hug, Stephan J
Sigg, Laura
description The fate of arsenic in aquatic systems is influenced by dissolved natural organic matter (DOM). Using UV-A and visible light from a medium-pressure mercury lamp, the photosensitized oxidation of As(III) to As(V) in the presence of Suwannee River humic acid was investigated. Pseudo-first-order kinetics was observed. For 5 mg L-1 of dissolved organic carbon (DOC) and 1.85 mEinstein m-2 s-1 UV-A fluence rate, the rate coefficient k°exp was 21.2 ± 3.2 10-5 s-1, corresponding to a half-life
doi_str_mv 10.1021/es051597r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17230780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>965384621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-15a6c472f097eae1b582a0984c984b496d2125ce98c5d8385fdd868cb74483833</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil2rB_8BGQTFHkZffk0yx2XVdqTQqit4C9kkg6mzkzZvRup_b3SXLujBQwghn3x5L4-QpxReU2D0TUCQVLYq3yMLKhnUUkt6nywAKK9b3nw9Io8QrwCAcdAPyRFthJKciwU5vfyWphRztj7aKaaxSn31NiKm4Ufw1dm8ja5auuirbvSzC1gtM4Yxuldd151UF7fR_3n2mDzo7YDhyX4_Jl_ev1uvzurzi9NutTyvrVAw1VTaxgnFemhVsIFupGYWWi1cWRvRNp5RJl1otZNecy1773Wj3UYJUY6cH5OXu9zrnG7mgJPZRnRhGOwY0oyGqtKi0vB_KFQDLRUFPv8LXqU5j6UJU6IoZ0zKgk52yOWEmENvrnPc2vzTUDC_Z2DuZlDss33gvNkGf5D7Ty_gxR5YdHbosx1dxINTvFGCs-LqnYs4hdu7e5u_m0ZxJc368rNZAV1_-NSuzMdDrnV4aOLfAn8B_EymgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230132255</pqid></control><display><type>article</type><title>Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Buschmann, Johanna ; Canonica, Silvio ; Lindauer, Ursula ; Hug, Stephan J ; Sigg, Laura</creator><creatorcontrib>Buschmann, Johanna ; Canonica, Silvio ; Lindauer, Ursula ; Hug, Stephan J ; Sigg, Laura</creatorcontrib><description>The fate of arsenic in aquatic systems is influenced by dissolved natural organic matter (DOM). Using UV-A and visible light from a medium-pressure mercury lamp, the photosensitized oxidation of As(III) to As(V) in the presence of Suwannee River humic acid was investigated. Pseudo-first-order kinetics was observed. For 5 mg L-1 of dissolved organic carbon (DOC) and 1.85 mEinstein m-2 s-1 UV-A fluence rate, the rate coefficient k°exp was 21.2 ± 3.2 10-5 s-1, corresponding to a half-life &lt;1 h. Rates increased linearly with DOC and they increased by a factor of 10 from pH 4 to 8. Based on experiments with radical scavengers, heavy water, and surrogates for DOM, excited triplet states and/or phenoxyl radicals seem to be important photooxidants in this system (rather than singlet oxygen, hydrogen peroxide, hydroxyl radicals, and superoxide). Photoirradiation of natural samples from freshwater lakes, rivers, and rice field water (Bangladesh) showed similar photoinduced oxidation rates based on DOC. Fe(III) (as polynuclear Fe(III)−(hydr)oxo complexes or Fe(III)−DOC complexes) accelerates the rate of photoinduced As(III) oxidation in the presence of DOC by a factor of 1.5−2.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es051597r</identifier><identifier>PMID: 16475334</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Arsenic ; Arsenic - chemistry ; Arsenic content ; Bangladesh ; Biological and physicochemical phenomena ; Carbon - chemistry ; Cations ; Comparative analysis ; Dissolved organic carbon ; Drinking water ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fresh water ; freshwater lakes ; heavy water ; Humic acids ; Humic Substances ; hydrogen peroxide ; Hydroxyl radicals ; Iron - chemistry ; Kinetics ; Mercury ; Natural water pollution ; Organic Chemicals - chemistry ; Organic matter ; Oryza sativa ; Oxidation ; Oxidation-Reduction ; Oxygen ; Photochemistry ; Pollution ; Pollution, environment geology ; Q1 ; Q2 ; Q3 ; Rice fields ; Rivers ; scavengers ; USA, Florida, Suwannee R ; Water - chemistry ; Water Pollutants, Chemical - analysis ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2005-12, Vol.39 (24), p.9541-9546</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-15a6c472f097eae1b582a0984c984b496d2125ce98c5d8385fdd868cb74483833</citedby><cites>FETCH-LOGICAL-a470t-15a6c472f097eae1b582a0984c984b496d2125ce98c5d8385fdd868cb74483833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es051597r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es051597r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17367432$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16475334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buschmann, Johanna</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Lindauer, Ursula</creatorcontrib><creatorcontrib>Hug, Stephan J</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><title>Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The fate of arsenic in aquatic systems is influenced by dissolved natural organic matter (DOM). Using UV-A and visible light from a medium-pressure mercury lamp, the photosensitized oxidation of As(III) to As(V) in the presence of Suwannee River humic acid was investigated. Pseudo-first-order kinetics was observed. For 5 mg L-1 of dissolved organic carbon (DOC) and 1.85 mEinstein m-2 s-1 UV-A fluence rate, the rate coefficient k°exp was 21.2 ± 3.2 10-5 s-1, corresponding to a half-life &lt;1 h. Rates increased linearly with DOC and they increased by a factor of 10 from pH 4 to 8. Based on experiments with radical scavengers, heavy water, and surrogates for DOM, excited triplet states and/or phenoxyl radicals seem to be important photooxidants in this system (rather than singlet oxygen, hydrogen peroxide, hydroxyl radicals, and superoxide). Photoirradiation of natural samples from freshwater lakes, rivers, and rice field water (Bangladesh) showed similar photoinduced oxidation rates based on DOC. Fe(III) (as polynuclear Fe(III)−(hydr)oxo complexes or Fe(III)−DOC complexes) accelerates the rate of photoinduced As(III) oxidation in the presence of DOC by a factor of 1.5−2.</description><subject>Applied sciences</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic content</subject><subject>Bangladesh</subject><subject>Biological and physicochemical phenomena</subject><subject>Carbon - chemistry</subject><subject>Cations</subject><subject>Comparative analysis</subject><subject>Dissolved organic carbon</subject><subject>Drinking water</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fresh water</subject><subject>freshwater lakes</subject><subject>heavy water</subject><subject>Humic acids</subject><subject>Humic Substances</subject><subject>hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Mercury</subject><subject>Natural water pollution</subject><subject>Organic Chemicals - chemistry</subject><subject>Organic matter</subject><subject>Oryza sativa</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Photochemistry</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Q1</subject><subject>Q2</subject><subject>Q3</subject><subject>Rice fields</subject><subject>Rivers</subject><subject>scavengers</subject><subject>USA, Florida, Suwannee R</subject><subject>Water - chemistry</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agil2rB_8BGQTFHkZffk0yx2XVdqTQqit4C9kkg6mzkzZvRup_b3SXLujBQwghn3x5L4-QpxReU2D0TUCQVLYq3yMLKhnUUkt6nywAKK9b3nw9Io8QrwCAcdAPyRFthJKciwU5vfyWphRztj7aKaaxSn31NiKm4Ufw1dm8ja5auuirbvSzC1gtM4Yxuldd151UF7fR_3n2mDzo7YDhyX4_Jl_ev1uvzurzi9NutTyvrVAw1VTaxgnFemhVsIFupGYWWi1cWRvRNp5RJl1otZNecy1773Wj3UYJUY6cH5OXu9zrnG7mgJPZRnRhGOwY0oyGqtKi0vB_KFQDLRUFPv8LXqU5j6UJU6IoZ0zKgk52yOWEmENvrnPc2vzTUDC_Z2DuZlDss33gvNkGf5D7Ty_gxR5YdHbosx1dxINTvFGCs-LqnYs4hdu7e5u_m0ZxJc368rNZAV1_-NSuzMdDrnV4aOLfAn8B_EymgQ</recordid><startdate>20051215</startdate><enddate>20051215</enddate><creator>Buschmann, Johanna</creator><creator>Canonica, Silvio</creator><creator>Lindauer, Ursula</creator><creator>Hug, Stephan J</creator><creator>Sigg, Laura</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20051215</creationdate><title>Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation</title><author>Buschmann, Johanna ; Canonica, Silvio ; Lindauer, Ursula ; Hug, Stephan J ; Sigg, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-15a6c472f097eae1b582a0984c984b496d2125ce98c5d8385fdd868cb74483833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic content</topic><topic>Bangladesh</topic><topic>Biological and physicochemical phenomena</topic><topic>Carbon - chemistry</topic><topic>Cations</topic><topic>Comparative analysis</topic><topic>Dissolved organic carbon</topic><topic>Drinking water</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fresh water</topic><topic>freshwater lakes</topic><topic>heavy water</topic><topic>Humic acids</topic><topic>Humic Substances</topic><topic>hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Mercury</topic><topic>Natural water pollution</topic><topic>Organic Chemicals - chemistry</topic><topic>Organic matter</topic><topic>Oryza sativa</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Photochemistry</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Q1</topic><topic>Q2</topic><topic>Q3</topic><topic>Rice fields</topic><topic>Rivers</topic><topic>scavengers</topic><topic>USA, Florida, Suwannee R</topic><topic>Water - chemistry</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buschmann, Johanna</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Lindauer, Ursula</creatorcontrib><creatorcontrib>Hug, Stephan J</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buschmann, Johanna</au><au>Canonica, Silvio</au><au>Lindauer, Ursula</au><au>Hug, Stephan J</au><au>Sigg, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2005-12-15</date><risdate>2005</risdate><volume>39</volume><issue>24</issue><spage>9541</spage><epage>9546</epage><pages>9541-9546</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The fate of arsenic in aquatic systems is influenced by dissolved natural organic matter (DOM). Using UV-A and visible light from a medium-pressure mercury lamp, the photosensitized oxidation of As(III) to As(V) in the presence of Suwannee River humic acid was investigated. Pseudo-first-order kinetics was observed. For 5 mg L-1 of dissolved organic carbon (DOC) and 1.85 mEinstein m-2 s-1 UV-A fluence rate, the rate coefficient k°exp was 21.2 ± 3.2 10-5 s-1, corresponding to a half-life &lt;1 h. Rates increased linearly with DOC and they increased by a factor of 10 from pH 4 to 8. Based on experiments with radical scavengers, heavy water, and surrogates for DOM, excited triplet states and/or phenoxyl radicals seem to be important photooxidants in this system (rather than singlet oxygen, hydrogen peroxide, hydroxyl radicals, and superoxide). Photoirradiation of natural samples from freshwater lakes, rivers, and rice field water (Bangladesh) showed similar photoinduced oxidation rates based on DOC. Fe(III) (as polynuclear Fe(III)−(hydr)oxo complexes or Fe(III)−DOC complexes) accelerates the rate of photoinduced As(III) oxidation in the presence of DOC by a factor of 1.5−2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16475334</pmid><doi>10.1021/es051597r</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2005-12, Vol.39 (24), p.9541-9546
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_17230780
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Arsenic
Arsenic - chemistry
Arsenic content
Bangladesh
Biological and physicochemical phenomena
Carbon - chemistry
Cations
Comparative analysis
Dissolved organic carbon
Drinking water
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fresh water
freshwater lakes
heavy water
Humic acids
Humic Substances
hydrogen peroxide
Hydroxyl radicals
Iron - chemistry
Kinetics
Mercury
Natural water pollution
Organic Chemicals - chemistry
Organic matter
Oryza sativa
Oxidation
Oxidation-Reduction
Oxygen
Photochemistry
Pollution
Pollution, environment geology
Q1
Q2
Q3
Rice fields
Rivers
scavengers
USA, Florida, Suwannee R
Water - chemistry
Water Pollutants, Chemical - analysis
Water treatment and pollution
title Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoirradiation%20of%20Dissolved%20Humic%20Acid%20Induces%20Arsenic(III)%20Oxidation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Buschmann,%20Johanna&rft.date=2005-12-15&rft.volume=39&rft.issue=24&rft.spage=9541&rft.epage=9546&rft.pages=9541-9546&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es051597r&rft_dat=%3Cproquest_cross%3E965384621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230132255&rft_id=info:pmid/16475334&rfr_iscdi=true