Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders
[Display omitted] Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceuti...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2015-11, Vol.495 (1), p.234-240 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 1 |
container_start_page | 234 |
container_title | International journal of pharmaceutics |
container_volume | 495 |
creator | Shah, Umang V. Wang, Zihua Olusanmi, Dolapo Narang, Ajit S. Hussain, Munir A. Tobyn, Michael J. Heng, Jerry Y.Y. |
description | [Display omitted]
Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature. |
doi_str_mv | 10.1016/j.ijpharm.2015.08.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722930350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517315301587</els_id><sourcerecordid>1722930350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-243256e9b6a547f40d31cfff185a25e0d71cf66aeb785b24a15242062e2b973b3</originalsourceid><addsrcrecordid>eNqFkMlu2zAQQImiRe2k_YQWPPYQqRxSJOVTEARZCgToJTkTFDVMaGgrKaXw35euHV9zGgzmzfYI-QasBAbq57YM2-nFxr7kDGTJ6pIp-EDWUGtRiEqrj2TNhK4LCVqsyFlKW8aY4iA-kxVXAiTAZk3wxnt0Mx097UPXheGZzthPGO28REx0HGhaorcOqY1oL04ZDhifd9QOLXXjC6aQyTzk_0m5vszB2Y5O498WY_pCPnnbJfx6jOfk6fbm8fq-ePh99-v66qFwFfC54JXgUuGmUVZW2lesFeC891BLyyWyVudUKYuNrmXDKwuSVzw_hbzZaNGIc_LjMHeK458F02z6kBx2nR1wXJIBzflGMCFZRuUBdXFMKaI3Uwy9jTsDzOwNm605GjZ7w4bVJhvOfd-PK5amx_bU9aY0A5cHAPOjrwGjSS7g4LANMZs27RjeWfEPS0uQDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722930350</pqid></control><display><type>article</type><title>Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shah, Umang V. ; Wang, Zihua ; Olusanmi, Dolapo ; Narang, Ajit S. ; Hussain, Munir A. ; Tobyn, Michael J. ; Heng, Jerry Y.Y.</creator><creatorcontrib>Shah, Umang V. ; Wang, Zihua ; Olusanmi, Dolapo ; Narang, Ajit S. ; Hussain, Munir A. ; Tobyn, Michael J. ; Heng, Jerry Y.Y.</creatorcontrib><description>[Display omitted]
Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2015.08.061</identifier><identifier>PMID: 26315119</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alanine - analogs & derivatives ; Alanine - chemistry ; Calorimetry, Differential Scanning ; Cohesion ; Crystallization ; Milling temperature ; Milling time ; Particle Size ; Silanisation ; Surface area ; Surface energy ; Surface Properties ; Technology, Pharmaceutical - methods ; Temperature ; Triazines - chemistry</subject><ispartof>International journal of pharmaceutics, 2015-11, Vol.495 (1), p.234-240</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-243256e9b6a547f40d31cfff185a25e0d71cf66aeb785b24a15242062e2b973b3</citedby><cites>FETCH-LOGICAL-c412t-243256e9b6a547f40d31cfff185a25e0d71cf66aeb785b24a15242062e2b973b3</cites><orcidid>0000-0003-2659-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517315301587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26315119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Umang V.</creatorcontrib><creatorcontrib>Wang, Zihua</creatorcontrib><creatorcontrib>Olusanmi, Dolapo</creatorcontrib><creatorcontrib>Narang, Ajit S.</creatorcontrib><creatorcontrib>Hussain, Munir A.</creatorcontrib><creatorcontrib>Tobyn, Michael J.</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y.</creatorcontrib><title>Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted]
Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.</description><subject>Alanine - analogs & derivatives</subject><subject>Alanine - chemistry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cohesion</subject><subject>Crystallization</subject><subject>Milling temperature</subject><subject>Milling time</subject><subject>Particle Size</subject><subject>Silanisation</subject><subject>Surface area</subject><subject>Surface energy</subject><subject>Surface Properties</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Temperature</subject><subject>Triazines - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlu2zAQQImiRe2k_YQWPPYQqRxSJOVTEARZCgToJTkTFDVMaGgrKaXw35euHV9zGgzmzfYI-QasBAbq57YM2-nFxr7kDGTJ6pIp-EDWUGtRiEqrj2TNhK4LCVqsyFlKW8aY4iA-kxVXAiTAZk3wxnt0Mx097UPXheGZzthPGO28REx0HGhaorcOqY1oL04ZDhifd9QOLXXjC6aQyTzk_0m5vszB2Y5O498WY_pCPnnbJfx6jOfk6fbm8fq-ePh99-v66qFwFfC54JXgUuGmUVZW2lesFeC891BLyyWyVudUKYuNrmXDKwuSVzw_hbzZaNGIc_LjMHeK458F02z6kBx2nR1wXJIBzflGMCFZRuUBdXFMKaI3Uwy9jTsDzOwNm605GjZ7w4bVJhvOfd-PK5amx_bU9aY0A5cHAPOjrwGjSS7g4LANMZs27RjeWfEPS0uQDw</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Shah, Umang V.</creator><creator>Wang, Zihua</creator><creator>Olusanmi, Dolapo</creator><creator>Narang, Ajit S.</creator><creator>Hussain, Munir A.</creator><creator>Tobyn, Michael J.</creator><creator>Heng, Jerry Y.Y.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2659-5500</orcidid></search><sort><creationdate>20151110</creationdate><title>Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders</title><author>Shah, Umang V. ; Wang, Zihua ; Olusanmi, Dolapo ; Narang, Ajit S. ; Hussain, Munir A. ; Tobyn, Michael J. ; Heng, Jerry Y.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-243256e9b6a547f40d31cfff185a25e0d71cf66aeb785b24a15242062e2b973b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alanine - analogs & derivatives</topic><topic>Alanine - chemistry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cohesion</topic><topic>Crystallization</topic><topic>Milling temperature</topic><topic>Milling time</topic><topic>Particle Size</topic><topic>Silanisation</topic><topic>Surface area</topic><topic>Surface energy</topic><topic>Surface Properties</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Temperature</topic><topic>Triazines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Umang V.</creatorcontrib><creatorcontrib>Wang, Zihua</creatorcontrib><creatorcontrib>Olusanmi, Dolapo</creatorcontrib><creatorcontrib>Narang, Ajit S.</creatorcontrib><creatorcontrib>Hussain, Munir A.</creatorcontrib><creatorcontrib>Tobyn, Michael J.</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Umang V.</au><au>Wang, Zihua</au><au>Olusanmi, Dolapo</au><au>Narang, Ajit S.</au><au>Hussain, Munir A.</au><au>Tobyn, Michael J.</au><au>Heng, Jerry Y.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>495</volume><issue>1</issue><spage>234</spage><epage>240</epage><pages>234-240</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted]
Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26315119</pmid><doi>10.1016/j.ijpharm.2015.08.061</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2659-5500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2015-11, Vol.495 (1), p.234-240 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1722930350 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alanine - analogs & derivatives Alanine - chemistry Calorimetry, Differential Scanning Cohesion Crystallization Milling temperature Milling time Particle Size Silanisation Surface area Surface energy Surface Properties Technology, Pharmaceutical - methods Temperature Triazines - chemistry |
title | Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20milling%20temperatures%20on%20surface%20area,%20surface%20energy%20and%20cohesion%20of%20pharmaceutical%20powders&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Shah,%20Umang%20V.&rft.date=2015-11-10&rft.volume=495&rft.issue=1&rft.spage=234&rft.epage=240&rft.pages=234-240&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2015.08.061&rft_dat=%3Cproquest_cross%3E1722930350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722930350&rft_id=info:pmid/26315119&rft_els_id=S0378517315301587&rfr_iscdi=true |